MULTIPLE CHOICE CORRECT ANSWER
Consider the ideal $I := (ux, uy, vx, uv)$ in the polynomial ring $\mathbb{Q}[u, v, x, y]$, where
$u, v, x, y$ are indeterminates. Choose the correct statement(s) from below:
$i):-$ Every prime ideal containing $I$ contains the ideal $(x, y)$;
$ii):-$ Every prime ideal containing $I$ contains the ideal $(x, y)$ or the ideal $(u, v)$;
$iii):-$ Every maximal ideal containing $I$ contains the ideal $(u, v)$;
$iv):-$ Every maximal ideal containing $I$ contains the ideal $(u, v, x, y)$.
ATTEMPT
Let P be the Prime-Ideal containing $I := (ux, uy, vx, uv)$ $I \subseteq P$ $\implies ux,vx,vy \in P$
If $x\notin I$ then since $ux,vx \in P$ we have $u,v \in P \implies (u,v) \in P$
on the other hand
If $u\notin I$ then since $uy,ux \in P$ we have $x,y \in P \implies (x,y) \in P$
Is my partial solution correct?
I had done with Options i) and ii).
What about iii),iv)?