Let $K$ be a field. I am trying to prove that $I=\langle y-x^2, z-x^3\rangle$ is a prime ideal in $K[x,y,z]$.
Main idea:
Define a homomorphism $\phi:K[z,y,z]\rightarrow K[x]$ as $$\phi(x)=x, \phi(y)=x^2, \phi(z)=x^3.$$
Clearly, $\phi$ is surjective. If we can show that the kernel $\phi $ is $I$, we are done. It is easy to see that $I\subseteq \ker \phi$. But I am struggling to prove that $\ker \phi\subseteq I$. I have been able to prove that any $F\in\ker\phi$ is of the form $$F(x,y,z)=(z-x^3) \frac{H_1(x,y,z)}{G(x)}+(y-x^2)\frac{H_2(x,y)}{G(x)}$$ where $H_1,H_2\in K[x,y,z]$ and $G\in K[x]$. If we can prove that $G=1$, then the proof will be complete.
Before going into the details I will need the following lemma:
Let $R$ be an integral domain and $k$ be its field of fractions. Let $c\in R$ be such that $$c=p_1\frac{a_1}{b_1}+p_2\frac{a_2}{b_2}$$ where
(1) $p_1,p_2\in R$ are primes,
(2) $a_j,b_j\in R$ are such that $(a_j,b_j)=(p_j,b_j)=1$ for $j=1,2$.
Then $$b_1=\pm b_2$$
Proof of Fact:
We have $$b_1b_2c=a_1p_1b_2+a_2p_2b_1$$ So $$b_2(b_1c-a_1p_1)=a_2p_2b_1$$ The LHS of the above equation is divisible by $b_2$, and hence also the RHS. As $b_2$ is coprime to $a_2$ and $p_2$, we must have $b_2\mid b_1$. Similarly we conclude that $b_1\mid b_2$. Hence $b_1=\pm b_2$.
Details of Calculation:
So let us start with $F\in \ker \phi$. Any $F$ is of the form $$F(x,y,z)=\sum_{i,j,k}a x^iy^jz^k\tag{1}$$ where $a\in K$. By the division algorithm in $K(x)[z]$ we get $$z^k=(z-x^3)P(x,z)+\frac{A_k}{B_k}\tag{2}$$ where $A_k,B_k\in K[x]$ and $P(x,z)$ is of the form of $p(x,z)/q(x)$ where $p(x,z)\in K[x,z]$ and $q(x)\in K[x]$.
Substituting the value of $z^k$ from (2) in (1) we get $$ \begin{align} F &=\sum_{i,j,k}a x^iy^j\left[(z-x^3)P(x,z)+\frac{A_k}{B_k}\right]\\ &= \sum_{i,j,k}a x^iy^j (z-x^3)P(x,z)+\sum_{i,j,k}a x^iy^j\frac{A_k}{B_k}\\ &= (z-x^3) \frac{H_1(x,y,z)}{G_1(x)}+\sum_{i,j,k}a x^iy^j\frac{A_k}{B_k}\\ \end{align}\tag{3} $$ where $H_1(x,y,z)\in K[x,y,z]$ and $G_1(x)\in K[x]$. By the division algorithm in $K(x)[y]$ we get $$y^j=(y-x^2)M(x,y)+\frac{C_j}{D_j}\tag{4}$$ where $C_j,D_j\in K[x]$ and $M(x,y)$ is of the form of $m(x,y)/n(x)$ where $m(x,y)\in K[x,y]$ and $n(x)\in K[x]$.
Substituting the value of $y^j$ from (4) in the second summation in (3) we get
$$ \begin{align} F &= (z-x^3) \frac{H_1(x,y,z)}{G_1(x)}+\sum_{i,j,k}a x^i\left((y-x^2)M(x,y)+\frac{C_j}{D_j}\right)\frac{A_k}{B_k}\\ &= (z-x^3) \frac{H_1(x,y,z)}{G_1(x)}+ \sum_{i,j,k}a x^i(y-x^2)M_j(x,y)\frac{A_k}{B_k}+\sum_{i,j,k}a x^i\frac{C_jA_k}{D_jB_k}\\ &= (z-x^3) \frac{H_1(x,y,z)}{G_1(x)}+(y-x^2)\frac{H_2(x,y)}{G_2(x)}+\frac{E_1}{E_2} \end{align}\tag{5} $$ where $H_2\in K[x,y]$ and $G_2,E_1,E_2\in K[x]$.
As $F\in\ker\phi$ we have $F(x,x^2,x^3)=0$. Substiting $y=x^2$ and $z=x^3$ in (5) we get $$ \begin{align} 0&=0\cdot \frac{H_1(x,y,z)}{G_1(x)}+0\cdot\frac{H_2(x,y)}{G_2(x)}+\frac{E_1}{E_2}\\ &=\frac{E_1}{E_2} \end{align}\tag{6} $$ Thus we get $$F=(z-x^3) \frac{H_1(x,y,z)}{G_1(x)}+(y-x^2)\frac{H_2(x,y)}{G_2(x)}\tag{7}$$ WLOG we can assume that $(G_1, H_1)=1$ and $(G_2, H_2)=1$. Then by the Lemma we conclude that $G_1=\pm G_2$. WLOG we can assume that $G_1=G_2$.
From here onwards I am unable to move ahead. Can you help?