Why is it that apparently only for even $k$,
$$ \int_{0}^{\pi/2}\ln^k\left(\tan^2{x\over 2}\right)\mathrm dx=\int_{0}^{\pi/2}\ln^k\left(\tan^2{x}\right)\mathrm dx$$
Specificallly, for all $k$,
$$\text{LHS}=-(-2)^{k+1}k!\,\sum_{n=0}^\infty \frac{(-1)^n}{(2n+1)^{k+1}}$$
But for odd $k$,
$$\text{RHS}=0$$
The case of $k=2$ for the $\text{LHS}$ is discussed in this post, while the $\text{RHS}$ is in this post.