More generally, if $f(z)$ is any function that has a Maclaurin series expansion that converges absolutely on the unit circle, then $$\begin{align} \int_{0}^{\infty} \frac{f(e^{ix}) - f(e^{-ix})}{x} \, \mathrm dx &= 2i \int_{0}^{\infty} \frac{1}{x} \sum_{n=0}^{\infty} \frac{f^{n}(0)}{n!} \, \sin(nx) \, \mathrm dx \\ &=2i \int_{0}^{\infty} \frac{1}{x} \sum_{n=1}^{\infty} \frac{f^{n}(0)}{n!} \, \sin(nx) \, \mathrm dx \\ &\overset{\spadesuit}{=} 2i \sum_{n=1}^{\infty} \frac{f^{(n)}(0)}{n!} \int_{0}^{\infty} \frac{\sin (nx)}{x} \, \mathrm dx \\ &= \pi i \sum_{n=1}^{\infty} \frac{f^{n}(0)}{n!} \\ &= \pi i \left(f(1) - f(0) \right). \end{align}$$
($\spadesuit$ See the addendum of Sangchul Lee's answer here.)
It's the case $\alpha =0$ of the formula I derived here.
If the Maclaurin series has a radius of converge greater than $1$, it will necessarily converge absolutely on the unit circle.
For $f(z) = e^{z}$, which is an entire function, we have $$ \int_{0}^{\infty} \frac{e^{e^{ix}}-e^{e^{ix}}}{x} \, \mathrm dx= 2i \int_{0}^{\infty} \frac{e^{\cos x}\sin(\sin x)}{x} \, \mathrm dx = \pi i \left(e-1 \right). $$
Some other examples:
$$ \int_{0}^{\infty} \frac{\sin(e^{ix})-\sin(e^{-ix})}{x} \, \mathrm dx = 2i \int_{0}^{\infty} \frac{\cos (\cos x) \sinh(\sin x)}{x} \, \mathrm dx = \pi i \sin(1) $$
$$\int_{0}^{\infty} \frac{\cos(e^{ix})-\cos(e^{-ix}) }{x} \, \mathrm dx = -2i\int_{0}^{\infty} \frac{\sin( \cos x) \sinh(\sin x)}{x} \, \mathrm dx = \pi i \left(\cos(1) - 1 \right) $$
$$\int_{0}^{\infty} \frac{\operatorname{Li}_{2}(e^{ix})-\operatorname{Li}_{2}(e^{-ix})}{x} \, \mathrm dx = 2i \int_{0}^{\infty} \frac{\operatorname{Cl}_{2}(x)}{x} \, \mathrm dx = \frac{\pi^{3}i }{6} $$
$$\int_{0}^{\infty} \frac{\frac{1}{\Gamma(e^{ix})}-\frac{1}{\Gamma(e^{-ix})}}{x} \, \mathrm dx = \pi i $$
Due to the fact that these integrals don't converge absolutely, they can be difficult to approximate numerically. Wolfram Alpha will sometimes return bizarre approximations.
To get a rough approximation, you can make the upper limit "large" and tell Wolfram Alpha to use the midpoint method/rule with lots of intervals.
See here , here and here.
The same approach can be used to show that $$\int_{0}^{\infty} \frac{f(e^{ix})-f(e^{-ix})}{x} \, \cos(x) \, \mathrm dx = \pi i \left(f(1) -f(0) - \frac{f'(0)}{2} \right), $$ and, therefore, $$2i \int_{0}^{\infty} \frac{e^{\cos x} \sin(\sin x) \cos(x)}{x} \, \mathrm dx = \pi i \left(e- \frac{3}{2} \right). $$