Consider the substitution $ u=\tan x $, then the original integral becomes
$$
I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin\tan\tan x \cdot \tan x \, dx = \int_{-\infty}^{\infty} \frac{u\sin\tan u}{1+u^2} \, du.
$$
This integral can be handled using the residue theorem. Consider the complex variable function $ f(z) = \frac{ze^{i\tan z}}{1+z^2} $ integrated along the rectangular contour shown below.
$\textbf{Contour for}$ $ f(z) $ $\textbf{integral}$
This rectangular contour has height $ a = \sqrt{R} $, and small circular arcs of radius $ \epsilon $ around all the poles $ z = (k+\frac{1}{2})\pi $, where $ k $ is an integer. Let $ z = x+iy $, then directly calculate
$$
e^{i\tan z} = e^{i\tan(x+iy)} = \exp\left(-\frac{(1+\tan^2x)\tanh y}{1+\tan^2x\tanh^2y}+i\frac{(1-\tanh^2y)\tan x}{1+\tan^2x\tanh^2y}\right) = \exp\left(-\frac{\sinh 2y}{\cos 2x+\cosh 2y}+i\frac{\sin 2x}{\cos 2x+\cosh 2y}\right).
$$
In the upper half-plane $ y \ge 0 $, we have
$$
|e^{i\tan z}| = \exp\left(-\frac{\sinh 2y}{\cos 2x+\cosh 2y}\right) \le 1.
$$
This means that as $ R \to +\infty $, the integrals along the two sides $ z = \pm R + iy $ of the rectangular contour satisfy
$$
\left|\int_{\pm} f(z) \, dz\right| \le \int_{\pm} |f(z)| \, |dz| \le \int_0^{\sqrt{R}} \left| \frac{z}{1+z^2} \right| \, dy \sim \frac{1}{\sqrt{R}} \to 0.
$$
And all the integrals along the small circular arcs tend to 0 as $ \epsilon \to 0^+ $.
Now, the integrals along the bottom edge $ y = 0 $ of the rectangle and the top edge $ y = \sqrt{R} $ remain to be analyzed:
In the limit $ R \to +\infty $, the former (in the sense of Cauchy principal value) gives $ \mathscr{P} \int_{-\infty}^{\infty} \frac{xe^{i\tan x}}{1+x^2} \, dx $.
And the latter (using $ y = \sqrt{R} \to +\infty $, the previous result gives $ e^{i\tan z} \to 1/e $)
$$
\lim_{R\to+\infty} \int_{y=\sqrt{R}} f(z) \, dz = -\frac{1}{e} \lim_{R\to+\infty} \int_{-R}^{R} \frac{x+i\sqrt{R}}{1+(x+i\sqrt{R})^2} \, dx.
$$
Applying the residue theorem to the entire contour, we obtain
$$
\mathscr{P} \int_{-\infty}^{\infty} \frac{xe^{i\tan x}}{1+x^2} \, dx - \frac{1}{e} \lim_{R\to+\infty} \int_{-R}^{R} \frac{x+i\sqrt{R}}{1+(x+i\sqrt{R})^2} \, dx = 2\pi i \operatorname{Res}_{z=i} f(z).
$$
Where $ \operatorname{Res}_{z=i} f(z) = e^{-\tanh 1}/2 $.
Wait a moment! We still don't know the second term on the left-hand side—right! So, let's introduce $ g(z) = \frac{z}{1+z^2} $ and repeat the same calculation on a completely similar rectangular contour (excluding the small circular arcs).
$\textbf{Contour for}$ $ g(z) $ $\textbf{integral}$
Based on the same analysis (let's skip that), we obtain the residue theorem
$$
\mathscr{P} \int_{-\infty}^{\infty} \frac{x}{1+x^2} \, dx - \lim_{R\to+\infty} \int_{-R}^{R} \frac{x+i\sqrt{R}}{1+(x+i\sqrt{R})^2} \, dx = 2\pi i \operatorname{Res}_{z=i} g(z).
$$
Where $ \operatorname{Res}_{z=i} g(z) = 1/2 $, and the principal value integral of the first term on the left-hand side is 0 since it's an odd function.
Now, using the equations obtained from the two residue theorems to eliminate the unknown terms, we finally get
$$
\mathscr{P} \int_{-\infty}^{\infty} \frac{xe^{i\tan x}}{1+x^2} \, dx = i\pi \left( e^{-\tanh 1} - e^{-1} \right).
$$
Taking the imaginary part yields the desired integral
$$
I = \int_{-\infty}^{\infty} \frac{x\sin\tan x}{1+x^2} \, dx = \pi \left( e^{-\tanh 1} - e^{-1} \right).
$$
It's easy to verify that this result is consistent with the problem statement, given $ \tanh 1 = \frac{e-e^{-1}}{e+e^{-1}} = \frac{e^2-1}{e^2+1} $.