-1

I do not seem to be be able to calculate this limit. I tired many things using l'Hospital but it gets messier. A useful limit is $\frac{\ln(1+x)}{x}=1$ as $x\to0$. But still it still does not give the desired result. Any hints? Suggestions? $$\lim_{x \to 0} (\cot^3(x)·x·(\ln(1+3x)-3x))$$

user21820
  • 57,693
  • 9
  • 98
  • 256

6 Answers6

2

$$L = \lim_{x \to 0} {x\cot^3(x)(\ln(1+3x)-3x)} = \lim_{x \to 0} {\dfrac{\ln(1+3x)-3x}{x^2}} = 9\lim_{x \to 0} {\dfrac{\ln(1+3x)-3x}{(3x)^2}}$$

Let $y = 3x$

$$\lim_{y \to 0} {\dfrac{\ln(1+y)-y}{y^2}} = \dfrac{-1}2$$

As shown here. So $L = \dfrac{-9}{2}$

user8277998
  • 2,666
2

$$\cot^3(x)\cdot x\cdot (\ln(1+3x)-3x)=(x^3\cot^3(x))\cdot \frac{\ln(1+3x)-3x}{x^2}=\\=(x^3\cot^3(x))\cdot \frac{3x-\frac{9x^2}{2}+o(x^2)-3x}{x^2}=(x^3\cot^3(x))\cdot \left(-\frac{9}{2}+o(1)\right)\to1\cdot\left(-\frac{9}{2}\right)=-\frac{9}{2}$$

user
  • 154,566
1

$\frac {(\cos^3 x)(x)(\ln (1+3x) - 3x)}{\sin^3 x}$

You can do a taylor expansion...

$\frac { (1)(x)(+3x - \frac {(3x)^2}{2} - 3x)}{x^3}\\ -\frac {9}{2}$

Doug M
  • 57,877
1

Using L'Hospital's rule:

$$\lim_{x\to0}\frac{\log(1+3x)-3x}{\sin^2x}\stackrel{\text{L'H}}=\lim_{x\to0}\frac{\frac3{1+3x}-3}{\sin2x}\stackrel{\text{L'H}}=\lim_{x\to0}\frac{-\frac9{(1+3x)^2}}{2\cos2x}=-\frac92$$

and then

$$\lim_{x\to0}\;\cot^3x\cdot x\cdot\left(\log(1+3x)-3x\right)=\lim_{x\to0}\,\cos^3x\cdot\frac x{\sin x}\cdot\frac{\log(1+3x)-3x}{\sin^2x}=1\cdot1\cdot\left(-\frac92\right)=-\frac92$$

DonAntonio
  • 211,718
  • 17
  • 136
  • 287
0

L'Hopital will work if you do a little housework beforehand. The expression equals

$$ \cos^3 x\cdot\frac{x^3}{\sin^3 x}\cdot\frac{x(\ln (1+3x) - 3x)}{x^3}.$$

The first two fractions $\to 1,$ so we need only study the last fraction. This equals

$$\frac{\ln (1+3x) - 3x}{x^2}.$$

Now it's fairly easy to use L'Hopital.

zhw.
  • 105,693
-1

Without l'Hopital, Taylor expansions or calculus:

$$\begin{aligned} L&=\frac{x\left(\ln(1+3x)-3x\right)}{\tan^3(x)} \\ u&=3x \\ L&=9\left(\frac{x}{\tan x}\right)^3\frac{\ln(1+u)-u}{u^2} \\ \lim L&=9\cdot1^3\cdot-\frac12\quad \end{aligned} $$


Using the standard limits of $\lim\frac{x}{\tan x}$ and $\lim\frac{\ln(1+u)-u}{u^2}$.

Jam
  • 10,325