If we know that $$\lim\limits_{x\to 1}{\frac{\ln x}{x-1}}=1$$ and $$\lim\limits_{x\to 0}{\frac{x+\ln (1-x)}{x^2}}=l\in\mathbb{R}$$ find the value of $l$ without derivatives.
I have only managed to find that: $$\lim\limits_{x\to 0}{\frac{\ln (1-x)}{x}}=-1$$ Any hint?