5

If we know that $$\lim\limits_{x\to 1}{\frac{\ln x}{x-1}}=1$$ and $$\lim\limits_{x\to 0}{\frac{x+\ln (1-x)}{x^2}}=l\in\mathbb{R}$$ find the value of $l$ without derivatives.

I have only managed to find that: $$\lim\limits_{x\to 0}{\frac{\ln (1-x)}{x}}=-1$$ Any hint?

A.Γ.
  • 29,518

1 Answers1

12
  1. Change $x\to 0$ to $(-x)\to 0$ to get $$ \lim_{x\to 0}\frac{-x+\ln(1+x)}{x^2}=l. $$
  2. Add two limits $$ 2l=l+l=\lim_{x\to 0}\Bigl(\frac{x+\ln(1-x)}{x^2}+\frac{-x+\ln(1+x)}{x^2}\Bigr)= \lim_{x\to 0}\frac{\ln(1-x^2)}{x^2}. $$
  3. Change $x^2=t\to 0$ to get $$ 2l=\lim_{t\to 0}\frac{\ln(1-t)}{t}=-1. $$ Thus, $l=-\frac12$.
A.Γ.
  • 29,518