We can use brute force.
First, notice that: $$ \int_0^\infty \frac{\log(x)}{(1+x)(1+x^2)}=\frac{-\pi^2}{16}, \int_0^\infty \frac{\log^2(x)}{(1+x)(1+x^2)}=\frac{\pi^3}{16} ,\int_0^\infty \frac{\log^3(x)}{(1+x)(1+x^2)}=\frac{-7\pi^4}{128}$$
Now, to calculate $\int_0^\infty \frac{\log^4(x)}{(1+x)(1+x^2)}$ we will consider the integral $\int_C\frac{\log^5(z)}{(1+z)(1+z^2)}$ and use the keyhole contour

Then
$\begin{align} \displaystyle \int_C \frac{\log^5(z)}{(1+z)(1+z^2)}dz = \int_{\epsilon}^{R} \frac{\log^5(x)}{(1+x)(1+x^2)}dx-\int_{\epsilon}^{R} \frac{(\log(x)+2\pi i)^5}{(1+x)(1+x^2)}dx+(\int_{\gamma_{\epsilon}}+\int_{\gamma_R})f(z)dz = 2\pi i(\operatorname{Res}_{z=i}f(z)+\operatorname{Res}_{z=-i}f(z)+\operatorname{Res}_{z=-1}f(z))\end{align}$
Where $f(z)= \frac{\log^5(x)}{(1+x)(1+x^2)}$
Notice that the branch of $\log(z)$ is with $0< \theta< 2\pi$ we have:
$\operatorname{Res}_{z=i}f(z)= \frac{\pi^5(1-i)}{128}$
$\operatorname{Res}_{z=-i}f(z)= \frac{243\pi^5(-1-i)}{128}$
$\operatorname{Res}_{z=-1}f(z)= \frac{i\pi^5}{2}$
Then: $2\pi i(\operatorname{Res}_{z=i}f(z)+\operatorname{Res}_{z=-i}f(z)+\operatorname{Res}_{z=-1}f(z))= \frac{-242\pi^6 i}{64}+\frac{180\pi^6}{64}$
When $\epsilon \rightarrow 0$ and $R \rightarrow \infty$:
$$\begin{align}
\int_{\epsilon}^{R} \frac{\log^5(x)}{(1+x)(1+x^2)}dx-\int_{\epsilon}^{R} \frac{(\log(x)+2\pi i)^5}{(1+x)(1+x^2)}dx \end{align}$$
$$= -\int_{0}^{\infty}\frac{10\pi i \log^4(x)}{(1+x)(1+x^2)}+\int_{0}^{\infty}\frac{40\pi^2\log^3(x)}{(1+x)(1+x^2)}+\int_{0}^{\infty}\frac{80i\pi^3\log^2(x)}{(1+x)(1+x^2)}-\int_{0}^{\infty}\frac{80\pi^4\log(x)}{(1+x)(1+x^2)}-\int_{0}^{\infty}\frac{i32\pi^5}{(1+x)(1+x^2)}= -\int_{0}^{\infty}\frac{10\pi i \log^4(x)}{(1+x)(1+x^2)}- \frac{140\pi^6}{64}+\frac{320i\pi^6}{64}+\frac{320\pi^6}{64}-\frac{512i\pi^6}{64} =
-\int_{0}^{\infty}\frac{10\pi i \log^4(x)}{(1+x)(1+x^2)}+ \frac{180\pi^6}{64}-\frac{192i\pi^6}{64}$$
And you must show that:
$|\int_{\gamma_{\epsilon}}f(z)dz| \rightarrow 0 , |\int_{\gamma_R}f(z)dz| \rightarrow 0$
So: $$-\int_{0}^{\infty}\frac{10\pi i \log^4(x)}{(1+x)(1+x^2)}+ \frac{180\pi^6}{64}-\frac{192i\pi^6}{64}=\frac{-242\pi^6 i}{64}+\frac{180\pi^6}{64}$$
Follows that:
$$\int_{0}^{\infty}\frac{\log^4(x)}{(1+x)(1+x^2)}=\frac{5\pi^5}{64}$$.
Then the question is how to calculate $ \int_0^\infty \frac{\log(x)}{(1+x)(1+x^2)}=\frac{-\pi^2}{16}, \int_0^\infty \frac{\log^2(x)}{(1+x)(1+x^2)}=\frac{\pi^3}{16} ,\int_0^\infty \frac{\log^3(x)}{(1+x)(1+x^2)}=\frac{-7\pi^4}{128}$
To calculate these integrals you should proceed in the same way. That is, to calculate $ \int_0^\infty \frac{\log^{n}(x)}{(1+x)(1+x^2)}$ you should consider $\int_C\frac{\log^{n+1}(z)}{(1+z)(1+z^2)}$. In our case, $n=1,2,3$.