3

Recently, I am struggling to solve the limit: $$\lim_{x\rightarrow+\infty}(\sqrt[5]{x^5-x^4}-x)$$ If I try to make some fraction with nominator $-x^4$ and some irrational denominator by multiplying, it becomes more complex. Can anyone help about this with more easier way?

Olimjon
  • 607

7 Answers7

6

Hint:

Let $1/x=h\implies h\to0$

$$\sqrt[5]{x^5-x^4}=\sqrt[5]{\dfrac{1-h}{h^5}}=\dfrac{\sqrt[5]{1-h}}h$$

Now set $\sqrt[5]{1-h}=y\implies h=1-y^5$ to have $$-\lim_{y\to1}\dfrac{y-1}{y^5-1}=?$$

3

Let $a=\sqrt[5]{x^5-x^4}$ and $b=x$. Then\begin{align}\sqrt[5]{x^5-x^4}-x&=a-b\\&=\frac{(a-b)(a^4+a^3b+a^2b^2+ab^3+b^4)}{a^4+a^3b+a^2b^2+ab^3+b^4}\\&=\frac{a^5-b^5}{a^4+a^3b+a^2b^2+ab^3+b^4}\\&=\frac{-x^4}{\sqrt[5]{x^5-x^4}^4+\sqrt[5]{x^5-x^4}^3\,x+\sqrt[5]{x^5-x^4}^2\,x^2+\sqrt[5]{x^5-x^4}\,x^3+x^4}\\&=\frac{-1}{\left(\frac{\sqrt[5]{x^5-x^4}}x\right)^4+\left(\frac{\sqrt[5]{x^5-x^4}}x\right)^3+\left(\frac{\sqrt[5]{x^5-x^4}}x\right)^2+\frac{\sqrt[5]{x^5-x^4}}x+1}\\&=\frac{-1}{\left(\sqrt[5]{1-\frac1x}\,\right)^4+\left(\sqrt[5]{1-\frac1x}\,\right)^3+\left(\sqrt[5]{1-\frac1x}\,\right)^2+\sqrt[5]{1-\frac1x}+1}\end{align}and therefore\begin{align}\lim_{x\to+\infty}\sqrt[5]{x^5-x^4}-x&=\lim_{x\to+\infty}\frac{-1}{\left(\sqrt[5]{1-\frac1x}\,\right)^4+\left(\sqrt[5]{1-\frac1x}\,\right)^3+\left(\sqrt[5]{1-\frac1x}\,\right)^2+\sqrt[5]{1-\frac1x}+1}\\&=-\frac15.\end{align}

  • Actually, this way was the way I was scared for being so long to solve. But, however, thanks for the support. +1 for detailed answer... – Olimjon Dec 12 '17 at 15:42
2

$$(\sqrt[5]{x^5-x^4}-x)=\frac{\sqrt[5]{1-x^{-1}}-1}{1/x}$$ $\sqrt[5]{1-x^{-1}}-1\rightarrow0$ and $1/x\rightarrow0$ as $x\rightarrow\infty$. So apply l'Hospital's rule.

QED
  • 12,644
1

$$\lim_{x\to\infty}(\sqrt[5]{x^5-x^4}-x)=\lim_{x\to\infty}(x\sqrt[5]{1-\frac{1}{x}}-x)$$ By Applying Binomial Theorem ($a<<1 \implies (1-a)^x = (1-xa$)) $$\lim_{x\to\infty}(x(1-\frac{1}{5x})-x)=\lim_{x\to\infty}((x-\frac{1}{5})-x)=\lim_{x\to\infty}(x-\frac{1}{5}-x)=-\frac{1}{5}$$

0xVikas
  • 120
1

A slight twist :

Using bhatthachargee's substitution $1/x =:h$ , $h \rightarrow 0$, leads to the expression:

$ f(h):=- \dfrac{\sqrt[5]{1-h} -1}{-h}$.

Note:

$\lim_{h \rightarrow 0}f(h) = $

$-(\dfrac{d}{dx} \sqrt[5]{x})_{x=1}= -(1/5)$

Peter Szilas
  • 20,344
  • 2
  • 17
  • 28
0

By definition of derivative at $t=0$. set $t=\frac1x$

$$\lim_{x\rightarrow+\infty}(\sqrt[5]{x^5-x^4}-x) =\lim_{t\to 0}\frac{\sqrt[5]{1-t}-1}{t-0} =(\sqrt[5]{1-t})'|_{t=0}=-\frac15 $$

Guy Fsone
  • 23,903
0

Multiply/divide by the conjugate quintinomial (polynomial factor of $a^5-b^5$). The numerator will turn to $-x^4$, while the denominator will be a sum of five terms of the form $\left(\sqrt[5]{x^5-x^4}\right)^kx^{4-k}$, all asymptotic to $x^4$. Hence the limit is

$$-\frac15.$$

  • 1
    Is not this what JoseCarlosSantos did and the OP was scared? And why go this difficult method, while there are other simpler methods shown here? One could understand your answering after almost a year if you come up with extraordinary method! – farruhota Nov 27 '18 at 10:55
  • @farruhota: you are right. –  Nov 27 '18 at 11:17