Recently, I am struggling to solve the limit: $$\lim_{x\rightarrow+\infty}(\sqrt[5]{x^5-x^4}-x)$$ If I try to make some fraction with nominator $-x^4$ and some irrational denominator by multiplying, it becomes more complex. Can anyone help about this with more easier way?
-
Whats the answer given ? (If you have a book or something) – 0xVikas Dec 12 '17 at 15:32
-
Thanks to @lab bhattacharjee, I found the answer by myself: -0.2 – Olimjon Dec 12 '17 at 15:36
-
I have a much simpler solution actually. – 0xVikas Dec 12 '17 at 15:37
-
I appreciate your support, please share it with us... – Olimjon Dec 12 '17 at 15:38
-
I have posted my solution. Please verify. – 0xVikas Dec 12 '17 at 15:48
-
A few somewhat similar limits can be found on this site. For example, Limits: How to evaluate $\lim\limits_{x\rightarrow \infty}\sqrt[n]{x^{n}+a_{n-1}x^{n-1}+\cdots+a_{0}}-x$ and some of the questions linked there. You could also look at Evaluating $\lim\limits_{x\to \infty}\sqrt[6]{x^{6}+x^{5}}-\sqrt[6]{x^{6}-x^{5}}$ and the questions linked there. – Martin Sleziak Nov 27 '18 at 11:17
7 Answers
Hint:
Let $1/x=h\implies h\to0$
$$\sqrt[5]{x^5-x^4}=\sqrt[5]{\dfrac{1-h}{h^5}}=\dfrac{\sqrt[5]{1-h}}h$$
Now set $\sqrt[5]{1-h}=y\implies h=1-y^5$ to have $$-\lim_{y\to1}\dfrac{y-1}{y^5-1}=?$$

- 274,582
Let $a=\sqrt[5]{x^5-x^4}$ and $b=x$. Then\begin{align}\sqrt[5]{x^5-x^4}-x&=a-b\\&=\frac{(a-b)(a^4+a^3b+a^2b^2+ab^3+b^4)}{a^4+a^3b+a^2b^2+ab^3+b^4}\\&=\frac{a^5-b^5}{a^4+a^3b+a^2b^2+ab^3+b^4}\\&=\frac{-x^4}{\sqrt[5]{x^5-x^4}^4+\sqrt[5]{x^5-x^4}^3\,x+\sqrt[5]{x^5-x^4}^2\,x^2+\sqrt[5]{x^5-x^4}\,x^3+x^4}\\&=\frac{-1}{\left(\frac{\sqrt[5]{x^5-x^4}}x\right)^4+\left(\frac{\sqrt[5]{x^5-x^4}}x\right)^3+\left(\frac{\sqrt[5]{x^5-x^4}}x\right)^2+\frac{\sqrt[5]{x^5-x^4}}x+1}\\&=\frac{-1}{\left(\sqrt[5]{1-\frac1x}\,\right)^4+\left(\sqrt[5]{1-\frac1x}\,\right)^3+\left(\sqrt[5]{1-\frac1x}\,\right)^2+\sqrt[5]{1-\frac1x}+1}\end{align}and therefore\begin{align}\lim_{x\to+\infty}\sqrt[5]{x^5-x^4}-x&=\lim_{x\to+\infty}\frac{-1}{\left(\sqrt[5]{1-\frac1x}\,\right)^4+\left(\sqrt[5]{1-\frac1x}\,\right)^3+\left(\sqrt[5]{1-\frac1x}\,\right)^2+\sqrt[5]{1-\frac1x}+1}\\&=-\frac15.\end{align}

- 427,504
-
Actually, this way was the way I was scared for being so long to solve. But, however, thanks for the support. +1 for detailed answer... – Olimjon Dec 12 '17 at 15:42
$$(\sqrt[5]{x^5-x^4}-x)=\frac{\sqrt[5]{1-x^{-1}}-1}{1/x}$$ $\sqrt[5]{1-x^{-1}}-1\rightarrow0$ and $1/x\rightarrow0$ as $x\rightarrow\infty$. So apply l'Hospital's rule.

- 12,644
$$\lim_{x\to\infty}(\sqrt[5]{x^5-x^4}-x)=\lim_{x\to\infty}(x\sqrt[5]{1-\frac{1}{x}}-x)$$ By Applying Binomial Theorem ($a<<1 \implies (1-a)^x = (1-xa$)) $$\lim_{x\to\infty}(x(1-\frac{1}{5x})-x)=\lim_{x\to\infty}((x-\frac{1}{5})-x)=\lim_{x\to\infty}(x-\frac{1}{5}-x)=-\frac{1}{5}$$

- 120
-
1The most original answer, I think. I did not know how to use Binomial theorem in such cases. I will edit your answer, if you don't mind, by your picture. – Olimjon Dec 12 '17 at 15:50
-
A slight twist :
Using bhatthachargee's substitution $1/x =:h$ , $h \rightarrow 0$, leads to the expression:
$ f(h):=- \dfrac{\sqrt[5]{1-h} -1}{-h}$.
Note:
$\lim_{h \rightarrow 0}f(h) = $
$-(\dfrac{d}{dx} \sqrt[5]{x})_{x=1}= -(1/5)$

- 20,344
- 2
- 17
- 28
By definition of derivative at $t=0$. set $t=\frac1x$
$$\lim_{x\rightarrow+\infty}(\sqrt[5]{x^5-x^4}-x) =\lim_{t\to 0}\frac{\sqrt[5]{1-t}-1}{t-0} =(\sqrt[5]{1-t})'|_{t=0}=-\frac15 $$

- 23,903
Multiply/divide by the conjugate quintinomial (polynomial factor of $a^5-b^5$). The numerator will turn to $-x^4$, while the denominator will be a sum of five terms of the form $\left(\sqrt[5]{x^5-x^4}\right)^kx^{4-k}$, all asymptotic to $x^4$. Hence the limit is
$$-\frac15.$$
-
1Is not this what JoseCarlosSantos did and the OP was scared? And why go this difficult method, while there are other simpler methods shown here? One could understand your answering after almost a year if you come up with extraordinary method! – farruhota Nov 27 '18 at 10:55
-