4

Let $K=(A+D)^{-1}A$ where $A$ is symmetric positive definite and $D$ is a diagonal matrix with positive elements. Is it true that $\|K\|\leq 1$ where $\|\cdot\|$ is the induced $2$-norm?

Thank you.

user1551
  • 139,064

1 Answers1

2

If $AD=DA$, the inequality is true: you have, if $d_n$ is the least entry in the diagonal of $D$, $$ A+D\geq A+d_nI. $$ So $(A+D)^{-1}\leq(A+d_nI)^{-1}$, and so $$ (A+D)^{-1}A=A^{1/2}(A+D)^{-1}A^{1/2}\leq A^{1/2}(A+d_nI)^{-1}A^{1/2}=(A+d_nI)^{-1}A $$ Now the inequality follows from the fact that inequalities between positive elements preserve norm, and $(A+d_nI)^{-1}A$ is positive and has eigenvalues $\lambda/(\lambda+d_n)$.

In general, the answer is no. For instance with $$ A=\begin{bmatrix} 2&1\\1&1\end{bmatrix},\ \ D=\begin{bmatrix} 1&0\\0&2\end{bmatrix}, $$ we have $$ K=(A+D)^{-1}A=\frac13\,\begin{bmatrix}5&4\\7&4\end{bmatrix}. $$ Then $\|K\|\geq 7/3>1$.

Martin Argerami
  • 205,756