$$\left|\int_{-n}^{n}e^{iy^2}dy\right|^2 =\left|\int_{-n}^{n}\cos{y^2}dy +i\int_{-n}^{n}\sin{y^2}dy\right|^2 \\= 4\left(\int_{0}^{n}\cos{y^2}dy \right)^2 + 4\left(\int_{0}^{n}\sin{y^2}dy \right)^2\\= 4[I^2_n + J^2_n]$$
This is somehow related to this: Prove only by transformation that: $ \int_0^\infty \cos(x^2) dx = \int_0^\infty \sin(x^2) dx $. Employing the change of variables $2u =x^2$ We get $$I_n=\int_0^n\cos(x^2) dx =\frac{1}{\sqrt{2}}\int^{n^2/2}_0\frac{\cos(2x)}{\sqrt{x}}\,dx$$ $$ J_n=\int_0^n \sin(x^2) dx=\frac{1}{\sqrt{2}}\int^{n^2/2}_0\frac{\sin(2x)}{\sqrt{x}}\,dx $$ Using the same change of variables like here one readily get
$$J_n = \frac{\sin^2 \frac{n^2}{2}}{n}+\frac{1}{2\sqrt{2}} \int^{\frac{n^2}{2}}_0\frac{\sin^2 x}{x^{3/2}}\,dx < \frac{1}{n}+\frac{1}{2\sqrt{2}} \int^{\infty}_0\frac{\sin^2 x}{x^{3/2}}\,dx $$
and
$$I_n =\frac{1}{2} \frac{\sin 2 n^2}{n} +\frac{1}{4 }\frac{\sin^2 \frac{n^2}{2}}{n} +\frac{3}{8\sqrt{2}} \int^{\frac{n^2}{2}}_0\frac{\sin^2 x}{x^{5/2}}\,dx \\< \frac{3}{4n} +\frac{3}{8\sqrt{2}} \int^{\infty}_0\frac{\sin^2 x}{x^{5/2}}\,dx $$
Since $0\le \sin^2 x\le 1$. From this we have,
$$\int^\infty_0\frac{\sin^2 x}{x^{5/2}}\,dx = \frac{4\sqrt \pi}{3}$$
similarly, we have $$\int^{\infty}_0\frac{\sin^2 x}{x^{3/2}}\,dx =\sqrt\pi$$
Whence,
$$J_n < \frac{1}{n}+\frac{\sqrt\pi}{2\sqrt{2}}= \frac{1}{n}+ \sqrt{\frac{\pi}{8}} $$
and
$$I_n < \frac{3}{4n}+\frac{\sqrt\pi}{2\sqrt{2}} = \frac{3}{4n}+ \sqrt{\frac{\pi}{8}} $$
Since,
$$\color{red}{\lim_{n\to\infty}4 \left[ \left(\frac{3}{4n}+ \sqrt{\frac{\pi}{8}} \right)^2+ \left(\frac{1}{n}+ \sqrt{\frac{\pi}{8}} \right)^2\right] = \pi <4}$$
That is for very large $n$ we get,
$$\color{red}{\left|\int_{-n}^{n}e^{iy^2}dy\right| = 2[I^2_n + J^2_n]^{1/2} \le 2\left[ \left(\frac{3}{4n}+ \sqrt{\frac{\pi}{8}} \right)^2+ \left(\frac{1}{n}+ \sqrt{\frac{\pi}{8}} \right)^2\right]^{1/2}<2}$$