I'm reading 3D math primer for graphics and game development by Fletcher Dunn and Ian Parberry. On page 170, the logarithm of quaternion is defined as
\begin{align} \log \mathbf q &= \log \left( \begin{bmatrix} \cos \alpha & \mathbf n \sin \alpha \end{bmatrix} \right) \\\\ &\equiv \begin{bmatrix} 0 & \alpha \mathbf n \end{bmatrix} \end{align}
I don't see how $\log \left( \begin{bmatrix} \cos \alpha & \mathbf n \sin \alpha \end{bmatrix} \right)$ is equal to $\begin{bmatrix} 0 & \alpha \mathbf n \end{bmatrix}$. Can anyone help me out?
Thanks.