I'm trying to solve one of my combinatorics exercise but I struggle a bit.
Is the equality correct for all the $n\ge 0$? $$\sum_{k=0}^\infty \binom{2k}{k}\binom{n}{k}\left(-\frac{1}{4}\right)^k=2^{-2n}\binom{2n}{n}$$
First of all:$$\sum_{n=0}^\infty \left(2^{-2n}\binom{2n}{n}\right)x^n=\sum_{n=0}^\infty \left( \frac{x}{4}\right)^n\binom{2n}{n}=\frac{1}{\sqrt{1-x}}$$ Now
$$\sum_{n=0}^\infty \left(\sum_{k=0}^\infty \binom{2k}{k}\binom{n}{k}\left(-\frac{1}{4}\right)^k \right)x^n=\sum_{k=0}^\infty \left(-\frac{1}{4}\right)^k\sum_{n=k}^\infty \binom{2k}{k}\binom{n}{k} x^n=[n-k=m]=\sum_{k=0}^\infty \left(-\frac{1}{4}\right)^k\sum_{m=0}^\infty \binom{2k}{k}\binom{m+k}{m} x^{m+k}=\sum_{k=0}^\infty \left(-\frac{x}{4}\right)^k\binom{2k}{k}\sum_{m=0}^\infty \binom{m+k}{m} x^{m}$$ and here I don't know what to do next. Can anyone help me? Thanks in advice!