We prove it by contradiction. Assume the following holds: $m(E)=1-\epsilon$ for some $\epsilon>0$. Clearly $m(E^c)=\epsilon$. Now you would actually like to choose some open interval $I$ such that $I$ is around $E^c$. If you could do that then $m(E\cap I) $ would be small and $\alpha m(I)$ would be large and that gives you the contradiction. But how you choose such$I$? It can be the case that $E^c$ is scattered around the whole interval $[0,1]$ so finding an open interval $I$ "near" $E^c$ cannot be achieved. Luckily we have a supertool to fix that, namely Littlewood's First Principle.
Littlewood's First Principle (LFP): Let $A\subset\mathbb{R}$ be Lebesgue measurable with $m(A)<\infty$ and let $\delta>0$. Then there exists a finite collection of disjoint open intervals $\{B_1,...,B_k\}$ such that $m(A\triangle \bigcup_{i=1}^kB_i)<\delta$.
The triangle means symmetric difference, i.e. $A\triangle B=[A\cup B]\setminus [A\cap B]$. The theorem as stated above works also if we would take $[0,1]$ instead of $\mathbb{R}$ and the open intervals that we will get will be in $[0,1]$.
We use LFP for $E^c$. Let $\delta=\alpha\epsilon/2>0$, then we get $\{B_1,...,B_k\}$ with the mentioned property. Define $O:=\bigcup_{i=1}^NB_i$. So we have $m(E^c \triangle O)<\delta$.
Note that we have $\alpha m(B_j)\leq m(E\cap B_j )$ for all $j\in \{1,...,k\}$. Since the sets $B_j$ are mutually disjoint we get:
\begin{align}
\alpha m(O) \leq m(E\cap O)
\end{align}
Now do some little algebra:
\begin{align}
m(O) = m( E\cap O) + m(E^c \cap O)
\end{align}
Furthermore:
\begin{align}
m(E^c\triangle O) = m(E^c \cup O) - m(E^c\cap O)
\end{align}
So:
\begin{align}
m(O) = m( E\cap O)+m(E^c \cup O)-m(E^c\triangle O)
\end{align}
So now we get:
\begin{align}
\alpha ( m(E\cap O) +m(E^c \cup O)-m(E^c\triangle O)) &\leq m(E\cap O)\\
\alpha ( m(E^c \cup O)-m(E^c\triangle O)) &\leq (1-\alpha) m(E\cap O)
\end{align}
Note also that $m(E\cap O)\leq m(E^c\triangle O)$ so:
\begin{align}
\alpha (m(E^c \cup O)-m(E^c\triangle O)) &\leq (1-\alpha) m(E^c\triangle O)\\
\alpha m(E^c \cup O) &\leq m(E^c\triangle O)
\end{align}
We finally get:
\begin{align}
m(E^c \cup O) < \frac \epsilon 2
\end{align}
Remember that $\epsilon=m(E^c) \leq m(E^c\cup O)<\epsilon/2$, a contradiction. So $m(E)=1$.