Let $E$ be measurable and $E\subset [0,1]$ .If for every $a,b$ with $0<a<b<1$ we have $m(E\cap (a,b))>\frac{b-a}{4}$ then show that $m(E)=1$.
MY TRY::
Consider the sequence $a_n=\frac{1}{n},b_n=1-\frac{1}{n}$ Then $\cup_{n=3}^\infty (a_n,b_n)=(0,1)$
Now $E=E\cap (0,1)$
Then $m(E)=m(E\cap (\cup_{n=3}^\infty (a_n,b_n))=m(\cup _{n=3}^\infty (E\cap (a_n,b_n))=\sum _{n=3}^\infty m(E\cap (a_n,b_n))$
$\ge\sum_{n=1}^\infty \dfrac{1-\frac{2}{n}}{4}$
How to show that $\sum_{n=1}^\infty {1-\frac{2}{n}}>4$
If I am able to show this I will be done.
Any help.