Let $(a_n)_n$ be a real, convergent, monotonic sequence. Prove that if the limit $$\lim_{n \to \infty}n(a_{n+1}-a_n)$$ exists, then it equals $0$.
I tried to apply the Stolz-Cesaro theorem reciprocal: $$\lim_{n\to \infty}n(a_{n+1}-a_n)=\lim_{n \to \infty} \frac{a_n}{1+\frac{1}{2}+\dots+\frac{1}{n-1}}=0$$ but I can't apply it since for $b_n=1+\frac{1}{2}+\dots+\frac{1}{n-1}$ we have $\lim_\limits{n \to \infty} \frac{b_{n+1}}{b_n}=1$. I also attempted the $\epsilon$ proof but my calculations didn't lead to anything useful.