This question is very much related to Inverse of the sum of matrices .
Let $d\ge 1$ be an integer and let $a\in(-1,1)$ and $b\in(-1,1)$ be real numbers. Let ${\bf C}:=\left( f(|i-j|) \right)_{i,j=1}^{d+1}$ be a symmetric positive definite matrix for dimension $(d+1)$ and finally let ${\bf U}:= \left( b^{l-1} a^{k-l-1} 1_{l\ge 1} 1_{k \ge l+1}\right)_{l,k=0}^d$. It appears that the matrix ${\bf U}$ has a rank equal to $(d-1)$.
The problem is now to find:
\begin{equation} \tilde{{\bf C}}(k):=\left( {\bf C}^{-1} + k \cdot {\bf U} \right)^{-1} = ? \end{equation}
Ideally we would like to find the function above symbolically as a function of the parameter $k$.
Now, by using the invertible matrix theorem we have shown that:
\begin{eqnarray} \lim_{k\rightarrow \infty} \tilde{{\bf C}}(k) = \left( \begin{array}{ccccc} f(0) +\kappa_{1,1} & 0 & \cdots & 0 & f(d) + \kappa_{1,d+1} \\ f(1) +\kappa_{2,1} & 0 & \cdots & 0 & f(d-1) + \kappa_{2,d+1}\\ 0 & 0 & \cdots & 0 & 0\\ \vdots \\ 0 & 0 & \cdots & 0 & 0 \end{array} \right)_{(d+1)\times (d+1)} \end{eqnarray}
where
\begin{eqnarray} \kappa_{1,1} &=& \frac{1}{{\mathfrak D}} \cdot \sum\limits_{j=0}^{d-2}(-1)^{j+1} f(j+2) \cdot \mbox{det} \left( f(|k-l-1+1_{k\ge 1}+1_{k\ge j+1}|) \right)_{k,l=0}^{d-2}\\ \kappa_{1,d+1} &=& \frac{1}{{\mathfrak D}} \cdot \sum\limits_{j=0}^{d-2}(-1)^{j+1} f(d-2-j) \cdot \mbox{det} \left( f(|k-l-1+1_{k\ge 1}+1_{k\ge j+1}|) \right)_{k,l=0}^{d-2}\\ \kappa_{2,1} &=& \frac{1}{{\mathfrak D}} \cdot \sum\limits_{j=0}^{d-2}(-1)^{j+1} f(j+2) \cdot \mbox{det} \left( f(|k-l+1_{k\ge j+1}|) \right)_{k,l=0}^{d-2}\\ \kappa_{2,d+1} &=& \frac{1}{{\mathfrak D}} \cdot \sum\limits_{j=0}^{d-2}(-1)^{j+1} f(d-2-j) \cdot \mbox{det} \left( f(|k-l+1_{k\ge j+1}|) \right)_{k,l=0}^{d-2} \end{eqnarray} and \begin{equation} {\mathfrak D}:= \mbox{det} \left( f(|i-j+1|)\right)_{i,j=1}^{d-2} \end{equation} Note 1: Our result is consistent with the Woodbury matrix theorem https://en.wikipedia.org/wiki/Woodbury_matrix_identity. Indeed our inverse is a sum of the original matrix ${\bf C}$ and a rank-$(d-1)$ correction to it (at least in the limit $k\rightarrow \infty$) as the theorem states.
Now, it is plausible that finding our function ${\tilde{\bf C}}(k)$ in full symbolic form is a very hard task and in fact is not really necessary because we can always use the theorem in question to compute our function numerically. Yet the temptation is strong to find at least the $1/k$-corrections to the large-$k$ behavior stated above.
How can we do that?