let $ \ \ 0<a \leq b \leq c \in \mathbb{R}$ then prove that :
$$\frac{(c-a)^2}{6c}\leq \frac{a+b+c}{3}-\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}$$
I do not know where to start please help me !
let $ \ \ 0<a \leq b \leq c \in \mathbb{R}$ then prove that :
$$\frac{(c-a)^2}{6c}\leq \frac{a+b+c}{3}-\frac{3}{\frac{1}{a}+\frac{1}{b}+\frac{1}{c}}$$
I do not know where to start please help me !
Your inequality is true!
We need to prove that $$\frac{a+b+c}{3}-\frac{3abc}{ab+ac+bc}\geq\frac{(c-a)^2}{6c}$$ or $$\frac{\sum\limits_{cyc}c(a-b)^2}{ab+ac+bc}\geq\frac{(c-a)^2}{2c}$$ or $$2c(a-b)^2+2a(b-c)^2\geq\left(\frac{ab}{c}+a-b\right)(c-a)^2.$$ Now, by C-S $$2c(a-b)^2+2a(b-c)^2=2ac\left(\frac{(b-a)^2}{a}+\frac{(c-b)^2}{c}\right)\geq$$ $$\geq\frac{2ac(b-a+c-b)^2}{a+c}=\frac{2ac(c-a)^2}{a+c}.$$ Thus, it remains to prove that $$2ac\geq(a+c)\left(\frac{ab}{c}+a-b\right)$$ or $$c^2a+c^2b\geq a^2b+a^2c,$$ which is obvious.
Clearing the denominators and moving all terms to the left we have to prove that $$-a^3b-a^3c+3a^2bc+4a^2c^2+2ab^2c-11abc^2+ac^3+2b^2c^2+bc^3\geq 0$$ Setting $$b=a+u,c=a+u+v$$ with $$u,v\geq 0$$ this inequality is equivalent to $$a^2(u-v)^2+4au^3+4au^2v+2auv^2+2av^3+3u^3+7u^3v+5u^2v^2+uv^3\geq 0$$ which is true.