Here is an example. Given a square symmetric matrix $H,$ we can use elementary matrices to perform one step at a time to construct $P^T H P = D,$ where $D$ is diagonal and $\det P = \pm 1.$ As the inverse of an elementary matrix is another (evident) elementary matrix, we can
also use these to construct $Q = P^{-1}$ a step at a time.
What follows below is the way I like to display the algorithm discussed at http://math.stackexchange.com/questions/1388421/reference-for-linear-algebra-books-that-teach-reverse-hermite-method-for-symmetr
$$ P^T H P = D $$
$$ Q^T D Q = H $$
$$ H = \left(
\begin{array}{rrr}
0 & 2 & 3 \\
2 & 1 & 5 \\
3 & 5 & 10 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrr}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrr}
1 & 2 & 5 \\
2 & 0 & 3 \\
5 & 3 & 10 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrr}
1 & - 2 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrr}
0 & 1 & 0 \\
1 & - 2 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrr}
2 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrr}
1 & 0 & 5 \\
0 & - 4 & - 7 \\
5 & - 7 & 10 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrr}
1 & 0 & - 5 \\
0 & 1 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrr}
0 & 1 & 0 \\
1 & - 2 & - 5 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrr}
2 & 1 & 5 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & - 4 & - 7 \\
0 & - 7 & - 15 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & 1 & - \frac{ 7 }{ 4 } \\
0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrr}
0 & 1 & - \frac{ 7 }{ 4 } \\
1 & - 2 & - \frac{ 3 }{ 2 } \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrr}
2 & 1 & 5 \\
1 & 0 & \frac{ 7 }{ 4 } \\
0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & - 4 & 0 \\
0 & 0 & - \frac{ 11 }{ 4 } \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrr}
0 & 1 & 0 \\
1 & - 2 & 0 \\
- \frac{ 7 }{ 4 } & - \frac{ 3 }{ 2 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
0 & 2 & 3 \\
2 & 1 & 5 \\
3 & 5 & 10 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
0 & 1 & - \frac{ 7 }{ 4 } \\
1 & - 2 & - \frac{ 3 }{ 2 } \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & - 4 & 0 \\
0 & 0 & - \frac{ 11 }{ 4 } \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrr}
2 & 1 & 0 \\
1 & 0 & 0 \\
5 & \frac{ 7 }{ 4 } & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrr}
1 & 0 & 0 \\
0 & - 4 & 0 \\
0 & 0 & - \frac{ 11 }{ 4 } \\
\end{array}
\right)
\left(
\begin{array}{rrr}
2 & 1 & 5 \\
1 & 0 & \frac{ 7 }{ 4 } \\
0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrr}
0 & 2 & 3 \\
2 & 1 & 5 \\
3 & 5 & 10 \\
\end{array}
\right)
$$