What about
$\displaystyle \pi=\frac{16}{5}+\frac{1}{10}\int_0^1 \frac{(1-x)^5(2x^2-5x-3)}{1+x^2}\,dx$
$\displaystyle \pi=\frac{7}{2}-\int_0^1 \frac{(1-x)(3x^2-2x+1)}{1+x^2}\,dx$
?
ADDENDUM 1:
What about
$\displaystyle \pi=\frac{7}{2}-\frac{1}{2}\int_0^1 \frac{(1-x)^2(3x^2-4x+3)}{1+x^2}\,dx$
?
ADDENDUM 2:
$\displaystyle \pi=\frac{16}{5}-\int_0^1 \frac{x(1-x)^4(2x^2-x+2)}{1+x^2}\,dx$
ADDENDUM 3:
$\displaystyle \pi=\frac{13}{4}-\frac{1}{10}\int_0^1 \frac{(1-x)^6(7x^2+5x+7)}{1+x^2}\,dx$
$\displaystyle \pi=\frac{13}{4}-\frac{1}{2}\int_0^1 \frac{x^2(1-x)^2(5x^2+4x+5)}{1+x^2}\,dx$
ADDENDUM 4:
$\displaystyle \pi=\frac{69}{22}+\frac{2}{11}\int_0^1 \frac{x^2(1-x)^2(8x^3+x^2-3x+1)}{1+x^2}\,dx$
ADDENDUM 5:
I have obtained all the results above using a PARI GP script.
\p 30;WX(m,n)={intnum(x=0,1,x^m*(1-x)^n/(1+x^2))};WY(m,n,a,b,c)={intnum(x=0,1,x^m*(1-x)^n*(a*x^2+b*x+c)/(1+x^2))};pisearch(mm,nn,aa,bb,cc,p,q)={T=matrix(mm+1,nn+1,m,n,WX(m-1,n-1));print("Initialisation completed");for(m=0,mm,for(n=0,nn,for(a=-aa,aa,for(b=-bb,bb,for(c=-cc,cc,if(a!=0 || b!=0 || c!=0,if(length(polrootsreal(a*x^2+b*x+c,[0,1]))==0,U=lindep([Pi,1,a*T[m+3,n+1]+b*T[m+2,n+1]+c*T[m+1,n+1]]);if(U[1]!=0 && abs(U[1])<700 && abs(U[2])<700 && abs(U[3])<700 && (q*U[2]-p*U[1]==0 || q*U[2]+p*U[1]==0),print(m," ",n," ",a," ",b," ",c," ",-U[2]/U[1])))))))));}
parameters:
$mm,nn$ are the range of powers in integrals:
$\displaystyle WY(m,n,a,b,c):=\int_0^1 \frac{x^m(1-x)^n(ax^2+bx+c)}{1+x^2}\,dx$
aa,bb are the range respectively for $a,b$. ($-aa\leq a\leq aa$...)
$p,q$ is for the fraction $\frac{p}{q}$.
Suppose you want to search for a rational dependence for $\pi,\frac{13}{4}$ and integral WY(m,n,a,b,c).
launch,
pisearch(8,8,20,20,20,13,4)
one of the results you obtain is:
3 3 14 1 15 13/4
To verify this result:
increase precision,
\p 100
lindep([Pi,1,WY(3,3,14,1,15)])
you obtain:
[-4,13,-4]
Therefore (probably),
$-4\pi+13-4\times WY(3,3,14,1,15)=0$
Therefore (probably),
$\displaystyle \pi=\frac{13}{4}-\int_0^1 \frac{x^3(1-x)^3(14x^2+x+15)}{1+x^2}\,dx$
NB1:
All polynomial $ax^2+bx+c$ considered don't have any roots on $[0;1]$.
NB2:
all results are only conjectures.
ADDENDUM 6:
$\displaystyle \pi=\frac{2}{7}\int_0^1 \frac{11x^2+25}{1+x^2}\,dx-\frac{22}{7}$
(sorry not useful)
This one is more useful,
$\displaystyle \pi=\frac{22}{7}-\frac{1}{28}\int_0^1 \frac{x(1-x)^8(2x^2+7x+2)}{1+x^2}\,dx$
ADDENDUM 7:
$\displaystyle \pi=\frac{22}{7}-\frac{1}{10}\int_0^1 \frac{x^2(1-x)^5(8x^2-5x+3)}{1+x^2}\,dx$