Well, whether you want it or not, this is Taylor with the integral remainder in disguise.
Since $f$ is $C^1$ then $\displaystyle \int_0^x f'(t)dt=f(x)-f(0)$
And since $f$ is also $C^2$ we can integrate by parts to find
$\displaystyle \int_0^x f'(t)dt=\bigg[(t-x)f'(t)\bigg]_0^x-\int_0^x (t-x)f''(t)dt=xf'(0)+\int_0^x (x-t)f''(t)dt$
And we find the Taylor formula with integral remainder:
$$f(x)=f(0)+xf'(0)+\int_0^x (x-t)f''(t)dt$$
Now notice that $\displaystyle \int_0^x (x-t)f''(0)dt=f''(0)\bigg[-\dfrac{(x-t)^2}2\bigg]_0^x=x^2\times \frac 12 f''(0)$
So when we regroup all this into one formula we have:
$\displaystyle h(x)=\dfrac{\dfrac{f(x)-f(0)}x-f'(0)}x-\dfrac 12f''(0)=\dfrac 1{x^2}\int_0^x (x-t)\big(f''(t)-f''(0)\big)dt$
Eventually exploiting the fact that $f''$ is continuous in $0$, we have $\bigg|f''(t)-f''(0)\bigg|<\varepsilon$
$\displaystyle\implies |h(x)|<\dfrac 1{x^2}\int_0^x (x-t)\ \varepsilon\ dt=\dfrac 1{x^2}\bigg[-\dfrac{(x-t)^2}2\varepsilon\bigg]_0^x=\dfrac{\varepsilon}2\qquad$ thus $\ \lim\limits_{x\to 0} h(x)=0$