I've got in my assignment to show if the following series converges or diverges. $$\sum_{n=1}^\infty \left(e^\frac{1}{n} -1 -\frac{1}{n}\right) $$
Attempt: \begin{align*} \sum_{n=1}^\infty \left(e^\frac{1}{n} -1 -\frac{1}{n}\right) &=\sum_{n=1}^\infty \left( 1 + \frac{1}{n} + \frac{1}{2!n^2}+\frac{1}{3!n^3}+...-1-\frac{1}{n}\right)\\ &=\sum_{n=1}^\infty \left(\frac{1}{2!n^2}+\frac{1}{3!n^3}+...\right)\\ &=\sum_{n=1}^\infty \left(\frac{1}{n} + \frac{1}{2!n^2}+\frac{1}{3!n^3}+...\right) \end{align*}
At this point I'm lost. I tried using D'Alambert as follows:
$$\lim \frac{a_{n+1}}{a_n}=\lim\frac{\sqrt[n+1]{e}-1-\frac{1}{n+1}}{\sqrt[n]{e}-1-\frac{1}{n}}$$
which I tried to simplify with basic limit laws (hopefully correctly):
$$\lim\frac{\sqrt[n+1]{e}-1}{\sqrt[n]{e}-1} = 1$$
I don't know where to go from here. Thank you for all your help in advance.
$$e^{1/n}=1+\frac1n +\frac12 ,e^{\xi}\left(\frac{1}{n}\right)^2$$
Hence, we see that since $n\ge 1$
$$\left|e^{1/n}-1-\frac1n\right|\le \frac{e}{2n^2}$$
– Mark Viola Jan 10 '18 at 14:22BesselI
has closed form solution ? – Mariusz Iwaniuk Jan 10 '18 at 15:26