Let $V_1,V_2$ be vector spaces, and $W_1,W_2$ be respective subspaces of $V_1$ and $V_2$.
Suppose $V_1\cong V_2$ and $W_1\cong W_2$.
Main question) Does $V_1/W_1\cong V_2/W_2$ always hold (even for infinite dimensional vector spaces)?
For finite dimensional vector spaces, we can easily see that $\dim(V_1/W_1)=\dim(V_2/W_2)$ so that the isomorphism holds true.
Side question) Just out of curiosity, does the above result hold for any other special classes of modules? I know of this example ($\mathbb{Z}$-modules), $V_1=V_2=V=\mathbb{Z}_2\oplus\mathbb{Z}_4$, $W_1=\langle (1,0)\rangle\cong\mathbb{Z}_2$, $W_2=\langle (0,2)\rangle\cong\mathbb{Z}_2$, but $$V/W_1\cong \mathbb{Z}_4$$ while $$V/W_2\cong\mathbb{Z}_2\oplus\mathbb{Z}_2$$. Hence in general for modules it is false.
Thanks!