Show that if $\sqrt{a}+\sqrt{b}\neq 0$, then $\mathbb{Q}(\sqrt{a}+\sqrt{b}) = \mathbb{Q}(\sqrt{a},\sqrt{b}), \forall a,b\in\mathbb{Q}$
It has something to do with $\sqrt{a} = -\sqrt{b}\implies a^2 = b^2$
The inclusion $\mathbb{Q}(\sqrt{a}+\sqrt{b})\subseteq \mathbb{Q}(\sqrt{a},\sqrt{b})$ is obvious
Now take $x\in \mathbb{Q}(\sqrt{a},\sqrt{b})$, that is: $x = c + d\sqrt{a} + e\sqrt{b} + f\sqrt{ab}$. I need to show that this is in $\mathbb{Q}(\sqrt{a}+\sqrt{b})$, that is, $x = g + h\sqrt{a} + i\sqrt{b}$, but I can't get that $\sqrt{ab}$ removed