I am trying to find the infinite sum
$$\sum_{n=1}^\infty \cot^{-1} (n^2 + ( \frac{3}{4})),$$ I tried to get a telescopic series but I couldn't find one.
I am trying to find the infinite sum
$$\sum_{n=1}^\infty \cot^{-1} (n^2 + ( \frac{3}{4})),$$ I tried to get a telescopic series but I couldn't find one.
As $\cot(A-B)=\dfrac{\cot A\cot B+1}{\cot B-\cot A}$
$$\dfrac{4n^2+3}4=1+\dfrac{4n^2-1}4=1+\dfrac{2n+1}2\cdot\dfrac{2n-1}2$$
Again,$\dfrac{2n+1}2-\dfrac{2n-1}2=1$
So, we can write $\cot^{-1}\left(n^2+\dfrac34\right)=\cot^{-1}\left(\dfrac{1+\dfrac{2n+1}2\cdot\dfrac{2n-1}2}{\dfrac{2n+1}2-\dfrac{2n-1}2}\right)$
$=\cot^{-1}\left(\dfrac{2n-1}2\right)-\cot^{-1}\left(\dfrac{2n+1}2\right)$
Hint. One may use, for $n\ge1$, $$\tan^{-1}\frac{1}{n^2+\frac34}=\tan^{-1}\frac{\left(n+\frac12\right)-\left(n-\frac12\right)}{1+\left(n+\frac12\right)\left(n-\frac12\right)}=\tan^{-1}\left(n+\frac12\right)-\tan^{-1}\left(n-\frac12\right)$$ then use the link between $\cot^{-1}$ and $\tan^{-1}$.