Find the sum of the infinite series $$\cos^{-1}(2.1^2)+\cos^{-1}(2.2^2)+\cos^{-1}(2.3^2)+\cos^{-1}(2.4^2)+......$$
My Attempt \begin{align} \cot^{-1}x&=\tan^{-1}\frac{1}{x}\text{, }x>0\\ \cot^{-1}(2.1^2)&+\cot^{-1}(2.2^2)+\cot^{-1}(2.3^2)+\cot^{-1}(2.4^2)+.....=\\ &=\tan^{-1}\frac{1}{2.1^2}+\tan^{-1}\frac{1}{2.2^2}+\tan^{-1}\frac{1}{2.3^2}+\tan^{-1}\frac{1}{2.4^2}+.....\\ &=\tan^{-1}\frac{}{}+\tan^{-1}\frac{}{}+\tan^{-1}\frac{}{}+\tan^{-1}\frac{}{}+..... \end{align} The solution given in my reference is $\dfrac{\pi}{4}$, but I am stuck as in my attempt not able to identify any common property among the terms to simplify the series.