A quick proof when $n$ is even: Spherical coordinates change yields
\begin{align*}
\int_{B_n} \frac{1}{(2\pi)^{n/2}} e^{-\|x\|^2/2} \, dx
&= \int_{0}^{\sqrt{n}} \frac{1}{(2\pi)^{n/2}} \underbrace{ \frac{2\pi^{n/2}}{\Gamma(\frac{n}{2})} r^{n-1} }_{=|\partial B_r|} e^{-r^2/2} \, dr \\
(r = \sqrt{2u}) \quad &= \int_{0}^{\frac{n}{2}} \frac{u^{\frac{n}{2}-1}}{\Gamma(\frac{n}{2})} e^{-u} \, du.
\end{align*}
Now assume that $n = 2k$ is even and $T_1, T_2, \cdots$ are i.i.d. exponential random variables of unit rate. Then the integral above can be written as
$$ \int_{0}^{k} \frac{u^{k-1}}{(k-1)!} e^{-u} \, du
= \mathbb{P}(T_1+\cdots+T_k \leq k)
= \mathbb{P}\left( \frac{T_1+\cdots+T_k - k}{\sqrt{k}} \leq 0 \right)$$
By the classical CLT, we have $\frac{T_1+\cdots+T_k - k}{\sqrt{k}} \Rightarrow Z \sim \mathcal{N}(0,1)$ as $k\to\infty$. So the above probability converges to $\mathbb{P}(Z \leq 0) = \frac{1}{2}$.
For a more general proof, let $\nu = n/2$ and apply the change of variables $u = \nu - \sqrt{\nu}t$. Then
$$ \int_{0}^{\nu} \frac{u^{\nu-1}}{\Gamma(\nu)} e^{-u} \, du
= \frac{\nu^{\nu-\frac{1}{2}}e^{-\nu}}{\Gamma(\nu)} \int_{0}^{1} \left(1 - \frac{t}{\sqrt{\nu}} \right)^{\nu - 1} e^{\sqrt{\nu}t} \mathbf{1}_{[0,\sqrt{\nu}]}(t)\, dt. $$
Now using the inequality $\log(1-x) \leq -x - \frac{x^2}{2}$ for $0 < x < 1$ and the quantitative form of the Stirling's approximation, we know that the integrand is uniformly bounded by
$$ \frac{\nu^{\nu-\frac{1}{2}}e^{-\nu}}{\Gamma(\nu)} \left(1 - \frac{t}{\sqrt{\nu}} \right)^{\nu - 1} e^{\sqrt{\nu}t} \mathbf{1}_{[0,\sqrt{\nu}]}(t)
\leq e^{\frac{3}{2}} \sqrt{2\pi} e^{-t^2/2}, $$
which is integrable. So by the dominated convergence theorem and the Stirling's approximation, we have
$$ \lim_{\nu\to\infty} \frac{\nu^{\nu-\frac{1}{2}}e^{-\nu}}{\Gamma(\nu)} \int_{0}^{1} \left(1 - \frac{t}{\sqrt{\nu}} \right)^{\nu - 1} e^{\sqrt{\nu}t} \mathbf{1}_{[0,\sqrt{\nu}]}(t)\, dt
= \frac{1}{\sqrt{2\pi}} \int_{0}^{\infty} e^{-t^2/2} \, dt
= \frac{1}{2}. $$