In the comments, the problem has been essentialized to computing the integral $\int_{B_{n,p}(0, r)}e^{-\frac{1}{\alpha}\|y\|_p^\beta}dy$. Here, I'll pursue the computations, only focusing on the case when $p \in \{1,2,\infty\}$.
Now, let $\varphi :[0, \infty) \rightarrow \mathbb R$ be a measurable function, e.g $\varphi(t) \equiv e^{-t^\beta/\alpha}$ (with $\alpha,\beta > 0$) in my problem. Define measurable functions $g,u:\mathbb R^n \rightarrow \mathbb R$ by $g(y) := \varphi(\|y\|_p)1_{B_{n,p}(0,R)}(y)$, $z(y) := \|y\|_p$. For $t \ge 0$, define the level-set $z^{-1}(t) := \{y \in \mathbb R^n \mid \|y\|_p = t\}=:S_{n,p}(0,t)$. Note that thanks to the triangle inequality for $\ell_p$-norms, $z$ is Lipschitz and $z^{-1}(t)$ is a.e smooth for all $t \ge 0$. Finally, note that $\partial_j u(y) = \dfrac{y_j|y_j|^{p-2}}{\|y\|_p^{p-1}}$ and so for every $y \in \mathbb R^n\setminus\{0\}$, we have
$$
\begin{split}
\|\nabla z(y)\|_2 &= \frac{1}{\|y\|_p^{p-1}}\sqrt{\sum_{j=1}^n y_j^2y^{2(p-2)}}=\frac{1}{\|y\|_p^{p-1}}\sqrt{\sum_{j=1}^n y^{2(p-1)}}\\
&=a_{n,p} := \begin{cases}1, &\mbox{ if }p \in \{2,\infty\},\\\sqrt{n},&\mbox{ if }p=1.\end{cases}
\end{split}
$$
For $m \in \mathbb N$, let $\mathcal L^m$ be the $m$-dimensional Lebesgue measure (aka $m$-dimensional volume) and let $\mathcal H^m$ be the $m$-dimensional Hausdorff measure (aka $m$-dimensional surface area). Then by the coarea formula, we have
$$
\begin{split}
a_{n,p}\int_{B_{n,p}(0,r)}\varphi(\|y\|_p)dy &= \int_{\mathbb R^n}g(y)\|\nabla z(y)\|_2dy\\
&= \int_{\mathbb R}\left(\int_{z^{-1}(t)}g(y)d\mathcal H^{n-1}(y)\right)dt\\
&= \int_{0}^r \varphi(t)\mathcal H^{n-1}(S_{n,p}(0,t))dt\\
&= \int_{0}^r \varphi(t)\partial_t\mathcal L^n (B_{n,p}(0,t))dt\\
&= n\omega_{n,p}(1)\int_{0}^r \varphi(t)t^{n-1}dt,
\end{split}
$$
where we've used the fact that $\mathcal L^n(B_{n,p}(0,t)) =: \omega_{n,p}(t) = t^n\omega_{n,p}(1)$. In particular, let $\varphi(t) \equiv e^{-t^\beta/\alpha}$. Define the incomplete gamma function $\gamma:[1,\infty) \times [0, \infty] \rightarrow [0, \infty)$, by $\gamma(a,x) := \int_{0}^x e^{-s}s^{a-1}ds$, and note that $\gamma(a,\infty) \equiv \Gamma(a)$, the ordinary gamma function. Then, letting $u:=u(n,p,r,\alpha,\beta)$, one computes
$$
\begin{split}
\frac{\beta a_{n,p}}{\alpha^{n/\beta}\Gamma(n/\beta)n\omega_{n,p}(1)}u &= \frac{\beta a_{n,p}}{\alpha^{n/\beta}\Gamma(n/\beta)n\omega_{n,p}(1)}\int_{\|y\|_p \le r}e^{-\frac{1}{\alpha}\|y\|_p^\beta}dy \\
&= \frac{\beta}{\alpha^{n/\beta}\Gamma(n/\beta)}\int_{0}^r e^{-t^\beta/\alpha}t^{n-1}dt\\
&=\frac{\gamma(n/\beta,r^{\beta}/\alpha)}{\Gamma(n/\beta)},
\end{split}
\tag{*}
$$
which is the CDF of the Amoroso distribution with parameters $\alpha^{1/\beta}$ (the scale), $n$, and $\beta$.
The LHS of (*) is the probability that a random vector $Y$ drawn from $\mathbb R^n$ drawn with density proportional to $e^{-\frac{1}{\alpha}\|Y\|_p^\beta}$ lies within an $\ell_p$-ball of radius $r$ around the origin. In particular, we derive from the above computations that the $k$ moment of $\|Y\|_p$ is given by
$$
\mathbb E[\|Y\|_p^k] = \frac{\alpha^{k/\beta}\Gamma((n + k)/\beta)}{\Gamma(n/\beta)} \sim \left(\frac{\alpha n}{\beta}\right)^{k/\beta},\text{ for }n \gg \beta. \tag{**}
$$
The special case $\beta=1$
In particular, if $\beta=1$, then
$$
\begin{split}
\frac{\gamma(n/\beta,(r/\alpha)^{1/\beta})}{\Gamma(n/\beta)}&=\frac{\gamma(n,r/\alpha)}{\Gamma(n)}=\mathbb P\left(\sum_{k=1}^nX_k \le r/\alpha\right)\\
&= \mathbb P\left(\sqrt{n}\left(\frac{\sum_{k=1}^n X_k}{n}-1\right)\le \frac{r/\alpha-n}{\sqrt{n}}\right)\\
&= \Phi\left(\frac{r/\alpha-n}{\sqrt{n}}\right) + \mathcal O\left(\frac{1}{\sqrt{n}}\right),
\end{split}
$$
where $X_1,\ldots,X_n$ are i.i.d unit rate exponential random variables and $\Phi$ is the CDF of the standard Gaussian distribution $\mathcal N(0, 1)$, and we have made use of the Central Limit Theorem.