Let's assume the next:
$$x_k \geq 0$$ $$L_1 = \lim_{n\rightarrow \infty} \sup_{k > n} {x_k}^{\frac{1}{k}} $$ $$L_2 = \lim_{n\rightarrow \infty} \sup_{k > n} \frac{x_{k+1}}{x_k} $$
I need to prove: $$ L_1 \leq L_2 $$
My ideas:
1) It looks like test for convergence. (if $ L_1 \le 1 $ or if we test something like {$x_k / (2 * L_1^k)$} )
2) We may try to build counterexample with propety $\forall n \in Nat, {x_k}^{\frac{1}{k}} > \frac{x_{k+1}}{x_k} $. It follows that $x_k \le x_2^{k-1}$. Then there is 3 cases $x_2 (>/< / =)1$. What must be next?