Here is a proof
from first principles.
If
$\lim_{n\to\infty} \frac{x_{n+1}}{x_n}=L
$,
then,
for any $c > 0$,
for all $n > n_0(c)$,
$L-c
\lt \frac{x_{n+1}}{x_n}
\lt L+c
$.
Therefore,
for any $N > n_0(c)$,
$(L-c)^{N-n_0(c)}
\lt \prod_{n=n_0(c)}^{N-1} \frac{x_{n+1}}{x_n}
=\dfrac{x_N}{x_{n_0(c)}}
\lt (L+c)^{N-n_0(c)}
$
so that
$x_{n_0(c)}(L-c)^{N-n_0(c)}
\lt x_N
\lt x_{n_0(c)}(L+c)^{N-n_0(c)}
$
or
$x_{n_0(c)}\dfrac{(L-c)^{N}}{(L-c)^{n_0(c)}}
\lt x_N
\lt x_{n_0(c)}\dfrac{(L+c)^{N}}{(L+c)^{n_0(c)}}
$.
Taking the $N$th root,
and rearranging a little,
$(L-c)\left(\dfrac{x_{n_0(c)}}{(L-c)^{n_0(c)}}\right)^{1/N}
\lt x_N^{1/N}
\lt (L+c)\left(\dfrac{x_{n_0(c)}}{(L+c)^{n_0(c)}}\right)^{1/N}
$.
Both
$\dfrac{x_{n_0(c)}}{(L-c)^{n_0(c)}}$
and
$\dfrac{x_{n_0(c)}}{(L+c)^{n_0(c)}}$
are independent of $N$,
so
$\lim_{N\to \infty} \left(\dfrac{x_{n_0(c)}}{(L\pm c)^{n_0(c)}}\right)^{1/N}
=1
$.
Therefore,
for large enough $N$,
$1-c
\lt \left(\dfrac{x_{n_0(c)}}{(L\pm c)^{n_0(c)}}\right)^{1/N}
\lt 1+c
$,
so that
$(L-c)(1-c)
\lt x_N^{1/N}
\lt (L+c)(1+c)
$.
Now let $c \to 0$
and,
for each $c$,
let $N$ be sufficiently large
and we are done.