0

Going off of this question: Maximum Proof (Average?) How can we prove that $max(|a|,|b|)\geq \frac{1}{2}(|a+b|)$?

user23899
  • 317

2 Answers2

0

first for $|a|>|b|$ $$2max\{|a|,|b|\}=2|a|>|a|+|b| \to(\div 2) max\{|a|,|b|\}>\frac{|a|+|b|}{2}$$ second for $|a|<|b|$ $$2max\{|a|,|b|\}=2|b|>|b|+|a| \to(\div 2) max\{|a|,|b|\}>\frac{|a|+|b|}{2}$$ 3rd for $|a|=|b|$ $$2max\{|a|,|b|\}=2|a|=2|b|=|a|+|b| \to(\div 2) max\{|a|,|b|\}=\frac{|a|+|b|}{2}$$ as a result we have $$ max\{|a|,|b|\}\geq\frac{|a|+|b|}{2} $$ we know $$|a|+|b|\geq |a+b|$$ so $$max\{|a|,|b|\}\geq\frac{|a|+|b|}{2} \geq \frac{|a+b|}{2} $$

Khosrotash
  • 24,922
0

$(1/2)|x+y| \le (1/2)(|x| + |y|) \le$

$(1/2)( |x| + |y| +||x| - |y|| =$

$\max${$|x|,|y|$}.

Note :

$\max${$a,b$}$= (1/2)(a +b + |a-b|)$.

Peter Szilas
  • 20,344
  • 2
  • 17
  • 28