-1

The link here: $\max(a,b)=\frac{a+b+|a-b|}{2}$ generalization shows that $\max(a,b)=\frac{a+b+|a-b|}{2}$.

Is it true that $\max(|a|,|b|)=\frac{1}{2}(|a|+|b|)$?

user23899
  • 317
  • $\max(|a|,|b|)=\frac12(|a|+|a|)$ or $\max(|a|,|b|)=\frac12(|b|+|b|)$ and one can conclude that $\max(|a|,|b|)=\frac12(|a|+|b|)$ is between those two value unless $|a|=|b|$ in which case all 3 are equal. – kingW3 Sep 13 '17 at 14:58

2 Answers2

1

$\max\{|a|,|b|\}=\frac{1}{2}(|a|+|b|)$ is wrong. Try $a=1$, $b=3$.

By the way, the following statement is true. $$\max\{|a|,|b|\}\geq\frac{1}{2}(|a|+|b|).$$

Indeed, let $|a|\geq|b|$. We can do it because our inequality is symmetric.

Thus, $\max\{|a|,|b|\}=|a|$ and we need to prove that $$|a|\geq\frac{1}{2}(|a|+|b|)$$ or $$|a|\geq|b|,$$ which is our assuming.

1

As we already know, $$\max(a,b)=\frac{a+b+|a-b|}{2}.$$ Therefore $$\max(|a|,|b|)=\frac{|a|+|b|+||a|-|b||}{2}.$$

So if $\max(|a|,|b|)=\frac12(|a|+|b|),$ then \begin{align} \tfrac12(|a|+|b|) &= \frac{|a|+|b|+||a|-|b||}{2} \\ &= \tfrac12(|a|+|b|) + \tfrac12(||a|-|b||). \end{align}

Subtracting $\frac12(|a|+|b|)$ from both sides, $$ 0 = \tfrac12(||a|-|b||), $$ which implies that $|a| = |b|.$ In other words, the only way your formula can work is when you could pick either $|a|$ or $|b|$ and get the maximum value either way.

David K
  • 98,388