A numerical calculation on Mathematica shows that
$$I_1=\int_0^1 x^x(1-x)^{1-x}\sin\pi x\,\mathrm dx\approx0.355822$$
and
$$I_2=\int_0^1 x^{-x}(1-x)^{x-1}\sin\pi x\,\mathrm dx\approx1.15573$$
A furthur investigation on OEIS (A019632 and A061382) suggests that $I_1=\frac{\pi e}{24}$ and $I_2=\frac\pi e$ (i.e., $\left\vert I_1-\frac{\pi e}{24}\right\vert<10^{-100}$ and $\left\vert I_2-\frac\pi e\right\vert<10^{-100}$).
I think it is very possible that $I_1=\frac{\pi e}{24}$ and $I_2=\frac\pi e$, but I cannot figure them out. Is there any possible way to prove these identities?
http://tinyurl.com/cjluvpj http://tinyurl.com/a6hnh9b
– Matt Lewis Nov 22 '12 at 14:26