Show that $[\mathbb{Q}(\sqrt[4]{2}, \sqrt{3}):\mathbb{Q}]=8$
$[\mathbb{Q}(\sqrt[4]{2}, \sqrt{3}):\mathbb{Q}]=[\mathbb{Q}(\sqrt[4]{2}),\mathbb{Q}(\sqrt{3})][\mathbb{Q}(\sqrt{3}),\mathbb{Q}]=(4)(2)=8$. For $x^4-2$ and $x^2-3$ are the minimal polynomials of $\sqrt[4]{2}$ in $\mathbb{Q}(\sqrt{3})$ and $\sqrt{3}$ in $\mathbb{Q}$ respectively. Is this correct?