Variants :
First congruence :
Observe first that $2$ has order $12 \bmod13$, so $4$ has order $6$, and that as $5^2\equiv -1\mod 13$, $5$ has order $4$. Thus
$$4^{103}+2\cdot 5^{104}\equiv 4^{103\bmod 6}2\cdot 5^{104\bmod 4}=4^1+2\cdot 5^0=6.$$
Now $6=2\cdot 3$ and we know $2$ has order $12 \bmod 13$, whereas $3$ has order $3$. We conclude that
$$6^{102}\equiv 2^{102\bmod 12}\cdot3^{102\bmod 3}=2^6\cdot3^0\equiv -1\mod 13.$$
Second congruence :
Using the Chinese remainder theorem, it is enough to calculate the expression modulo $3$ and modulo $13$.
Modulo $3$: $\;53\equiv 2$, which has order $2\bmod 3$, and $103\equiv 1$, so
$$53^{103}+103^{53}\equiv 2^{103\bmod 2}+1^{53}\equiv 0\mod 3.$$
Modulo $13$: $\;53\equiv 1$ and $103\equiv -1$, so $$53^{103}+103^{53}\equiv 1+(-1)^{53}\equiv 0\mod 13.$$
The Chinese remainder theorem asserts the canonical map
$$\mathbf Z/39\mathbf Z\longrightarrow\mathbf Z/3\mathbf Z\times\mathbf Z/13\mathbf Z $$
is an isomorphism, so we conclude that $\;53^{103}+103^{53}\equiv 0\mod 39$.