October:
$$ P^T H P = D $$
$$ Q^T D Q = H $$
$$ H = \left(
\begin{array}{rrrrr}
0 & 1 & 0 & - 1 & 0 \\
1 & 0 & 1 & - 1 & 1 \\
0 & 1 & 0 & 0 & - 1 \\
- 1 & - 1 & 0 & 0 & 2 \\
0 & 1 & - 1 & 2 & 0 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
- 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrrr}
2 & 1 & 1 & - 2 & 1 \\
1 & 0 & 1 & - 1 & 1 \\
1 & 1 & 0 & 0 & - 1 \\
- 2 & - 1 & 0 & 0 & 2 \\
1 & 1 & - 1 & 2 & 0 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 2 } & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 2 } & 0 & 0 & 0 \\
1 & \frac{ 1 }{ 2 } & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrrr}
\frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 0 & 0 & 0 \\
- 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrrr}
2 & 0 & 1 & - 2 & 1 \\
0 & - \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 0 & \frac{ 1 }{ 2 } \\
1 & \frac{ 1 }{ 2 } & 0 & 0 & - 1 \\
- 2 & 0 & 0 & 0 & 2 \\
1 & \frac{ 1 }{ 2 } & - 1 & 2 & 0 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrrr}
1 & 0 & - \frac{ 1 }{ 2 } & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 0 & 0 \\
1 & \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrrr}
\frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 0 & 0 \\
- 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrrr}
2 & 0 & 0 & - 2 & 1 \\
0 & - \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 0 & \frac{ 1 }{ 2 } \\
0 & \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 1 & - \frac{ 3 }{ 2 } \\
- 2 & 0 & 1 & 0 & 2 \\
1 & \frac{ 1 }{ 2 } & - \frac{ 3 }{ 2 } & 2 & 0 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 1 & 0 \\
1 & \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrrr}
\frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & - 1 & 0 \\
- 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrrr}
2 & 0 & 0 & 0 & 1 \\
0 & - \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 0 & \frac{ 1 }{ 2 } \\
0 & \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 1 & - \frac{ 3 }{ 2 } \\
0 & 0 & 1 & - 2 & 3 \\
1 & \frac{ 1 }{ 2 } & - \frac{ 3 }{ 2 } & 3 & 0 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & - \frac{ 1 }{ 2 } \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 1 & - \frac{ 1 }{ 2 } \\
1 & \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 1 & - \frac{ 1 }{ 2 } \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrrr}
\frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & - 1 & \frac{ 1 }{ 2 } \\
- 1 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrrr}
2 & 0 & 0 & 0 & 0 \\
0 & - \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 0 & \frac{ 1 }{ 2 } \\
0 & \frac{ 1 }{ 2 } & - \frac{ 1 }{ 2 } & 1 & - \frac{ 3 }{ 2 } \\
0 & 0 & 1 & - 2 & 3 \\
0 & \frac{ 1 }{ 2 } & - \frac{ 3 }{ 2 } & 3 & - \frac{ 1 }{ 2 } \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 2 } & - 1 & 1 & - \frac{ 1 }{ 2 } \\
1 & \frac{ 1 }{ 2 } & 0 & 1 & - \frac{ 1 }{ 2 } \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrrr}
\frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & - 1 & \frac{ 1 }{ 2 } \\
- 1 & 1 & - 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrrr}
2 & 0 & 0 & 0 & 0 \\
0 & - \frac{ 1 }{ 2 } & 0 & 0 & \frac{ 1 }{ 2 } \\
0 & 0 & 0 & 1 & - 1 \\
0 & 0 & 1 & - 2 & 3 \\
0 & \frac{ 1 }{ 2 } & - 1 & 3 & - \frac{ 1 }{ 2 } \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 2 } & - 1 & 1 & - 1 \\
1 & \frac{ 1 }{ 2 } & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrrr}
\frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & - 1 & \frac{ 1 }{ 2 } \\
- 1 & 1 & - 1 & 0 & - 1 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrrr}
2 & 0 & 0 & 0 & 0 \\
0 & - \frac{ 1 }{ 2 } & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & - 1 \\
0 & 0 & 1 & - 2 & 3 \\
0 & 0 & - 1 & 3 & 0 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 2 } & 1 & - 1 & - 1 \\
1 & \frac{ 1 }{ 2 } & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrrr}
\frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & - 1 & \frac{ 1 }{ 2 } \\
- 1 & 1 & - 1 & 0 & - 1 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrrr}
2 & 0 & 0 & 0 & 0 \\
0 & - \frac{ 1 }{ 2 } & 0 & 0 & 0 \\
0 & 0 & - 2 & 1 & 3 \\
0 & 0 & 1 & 0 & - 1 \\
0 & 0 & 3 & - 1 & 0 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & \frac{ 1 }{ 2 } & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 2 } & 1 & - \frac{ 1 }{ 2 } & - 1 \\
1 & \frac{ 1 }{ 2 } & 1 & \frac{ 1 }{ 2 } & 0 \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & \frac{ 1 }{ 2 } & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrrr}
\frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & - 1 & \frac{ 1 }{ 2 } \\
- 1 & 1 & - 1 & 0 & - 1 \\
0 & 0 & - \frac{ 1 }{ 2 } & 1 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrrr}
2 & 0 & 0 & 0 & 0 \\
0 & - \frac{ 1 }{ 2 } & 0 & 0 & 0 \\
0 & 0 & - 2 & 0 & 3 \\
0 & 0 & 0 & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } \\
0 & 0 & 3 & \frac{ 1 }{ 2 } & 0 \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & \frac{ 3 }{ 2 } \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 2 } & 1 & - \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } \\
1 & \frac{ 1 }{ 2 } & 1 & \frac{ 1 }{ 2 } & \frac{ 3 }{ 2 } \\
0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & \frac{ 1 }{ 2 } & \frac{ 3 }{ 2 } \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrrr}
\frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & - 1 & \frac{ 1 }{ 2 } \\
- 1 & 1 & - 1 & 0 & - 1 \\
0 & 0 & - \frac{ 1 }{ 2 } & 1 & - \frac{ 3 }{ 2 } \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrrr}
2 & 0 & 0 & 0 & 0 \\
0 & - \frac{ 1 }{ 2 } & 0 & 0 & 0 \\
0 & 0 & - 2 & 0 & 0 \\
0 & 0 & 0 & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } \\
0 & 0 & 0 & \frac{ 1 }{ 2 } & \frac{ 9 }{ 2 } \\
\end{array}
\right)
$$
==============================================
$$\left(
\begin{array}{rrrrr}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & - 1 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
$$
$$ P = \left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 2 } & 1 & - \frac{ 1 }{ 2 } & 1 \\
1 & \frac{ 1 }{ 2 } & 1 & \frac{ 1 }{ 2 } & 1 \\
0 & 0 & 0 & 1 & - 1 \\
0 & 0 & 1 & \frac{ 1 }{ 2 } & 1 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; Q = \left(
\begin{array}{rrrrr}
\frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & - 1 & \frac{ 1 }{ 2 } \\
- 1 & 1 & - 1 & 0 & - 1 \\
0 & 0 & - \frac{ 1 }{ 2 } & 1 & - \frac{ 3 }{ 2 } \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
, \; \; \; D = \left(
\begin{array}{rrrrr}
2 & 0 & 0 & 0 & 0 \\
0 & - \frac{ 1 }{ 2 } & 0 & 0 & 0 \\
0 & 0 & - 2 & 0 & 0 \\
0 & 0 & 0 & \frac{ 1 }{ 2 } & 0 \\
0 & 0 & 0 & 0 & 4 \\
\end{array}
\right)
$$
==============================================
$$ P^T H P = D $$
$$\left(
\begin{array}{rrrrr}
1 & 1 & 0 & 0 & 0 \\
- \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 0 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
- \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & 1 & \frac{ 1 }{ 2 } & 0 \\
1 & 1 & - 1 & 1 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
0 & 1 & 0 & - 1 & 0 \\
1 & 0 & 1 & - 1 & 1 \\
0 & 1 & 0 & 0 & - 1 \\
- 1 & - 1 & 0 & 0 & 2 \\
0 & 1 & - 1 & 2 & 0 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
1 & - \frac{ 1 }{ 2 } & 1 & - \frac{ 1 }{ 2 } & 1 \\
1 & \frac{ 1 }{ 2 } & 1 & \frac{ 1 }{ 2 } & 1 \\
0 & 0 & 0 & 1 & - 1 \\
0 & 0 & 1 & \frac{ 1 }{ 2 } & 1 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrr}
2 & 0 & 0 & 0 & 0 \\
0 & - \frac{ 1 }{ 2 } & 0 & 0 & 0 \\
0 & 0 & - 2 & 0 & 0 \\
0 & 0 & 0 & \frac{ 1 }{ 2 } & 0 \\
0 & 0 & 0 & 0 & 4 \\
\end{array}
\right)
$$
$$ Q^T D Q = H $$
$$\left(
\begin{array}{rrrrr}
\frac{ 1 }{ 2 } & - 1 & 0 & 0 & 0 \\
\frac{ 1 }{ 2 } & 1 & 0 & 0 & 0 \\
\frac{ 1 }{ 2 } & - 1 & - \frac{ 1 }{ 2 } & 1 & 0 \\
- 1 & 0 & 1 & 0 & 0 \\
\frac{ 1 }{ 2 } & - 1 & - \frac{ 3 }{ 2 } & 1 & 1 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
2 & 0 & 0 & 0 & 0 \\
0 & - \frac{ 1 }{ 2 } & 0 & 0 & 0 \\
0 & 0 & - 2 & 0 & 0 \\
0 & 0 & 0 & \frac{ 1 }{ 2 } & 0 \\
0 & 0 & 0 & 0 & 4 \\
\end{array}
\right)
\left(
\begin{array}{rrrrr}
\frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & \frac{ 1 }{ 2 } & - 1 & \frac{ 1 }{ 2 } \\
- 1 & 1 & - 1 & 0 & - 1 \\
0 & 0 & - \frac{ 1 }{ 2 } & 1 & - \frac{ 3 }{ 2 } \\
0 & 0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 & 1 \\
\end{array}
\right)
= \left(
\begin{array}{rrrrr}
0 & 1 & 0 & - 1 & 0 \\
1 & 0 & 1 & - 1 & 1 \\
0 & 1 & 0 & 0 & - 1 \\
- 1 & - 1 & 0 & 0 & 2 \\
0 & 1 & - 1 & 2 & 0 \\
\end{array}
\right)
$$
I have found a correct expression $Q^T D Q = H,$ where $H$ is the Hessian matrix of your quadratic form. Let me first paste in $D,Q,H.$ Note that $D$ has three positive (diagonal) entries and two negative, which is correct. Your expression is wrong.
Moving some denominators around to save typing, I get
$$ \frac{1}{4} \left( x + y + z - 2t +s \right)^2 -\frac{1}{4} \left( -x + y - z -s \right)^2 -\frac{1}{4} \left( - z + 2t -3s \right)^2 + \frac{1}{4} \left( z +s \right)^2 + 2 s^2 $$
which is just one of infinitely many correct expressions possible.
Now that I see how nicely this comes out, I would say this is an error-reduction idea: for each row in $Q$ where some coefficients are not integers, find the least common multiple of all the denominators, call that $n.$ Then multiply that row of $Q$ by $n$ but divide that entry in $D$ by $n^2.$ The outcome is that $D$ now has more fractions, but $Q$ is now all integers.
?
? form
%45 = (y - t)*x + ((z + (-t + s))*y + (-s*z + 2*s*t))
?
? me = (1/4) * ( x + y + z - 2*t +s )^2 -(1/4) * ( -x + y - z -s )^2 - (1/4) * ( - z + 2*t -3*s )^2 + (1/4) * ( z +s )^2 + 2 * s^2
%46 = (y - t)*x + ((z + (-t + s))*y + (-s*z + 2*s*t))
?
? me - form
%47 = 0
?
I guess I will put it here, this is a graph of the characteristic polynomial of the matrix $H,$ irreducible, five irrational real roots, three positive, two negative.
? p = charpoly(h)
%2 = x^5 - 10*x^3 + 4*x^2 + 13*x - 4
? factor(p)
%3 =
[x^5 - 10*x^3 + 4*x^2 + 13*x - 4 1]

The algorithm I used is at reference for linear algebra books that teach reverse Hermite method for symmetric matrices
==============================================================
? d
%29 =
[2 0 0 0 0]
[0 -1/2 0 0 0]
[0 0 -2 0 0]
[0 0 0 1/2 0]
[0 0 0 0 4]
? q
%30 =
[1/2 1/2 1/2 -1 1/2]
[-1 1 -1 0 -1]
[0 0 -1/2 1 -3/2]
[0 0 1 0 1]
[0 0 0 0 1]
? h
%31 =
[0 1 0 -1 0]
[1 0 1 -1 1]
[0 1 0 0 -1]
[-1 -1 0 0 2]
[0 1 -1 2 0]
?
==================================================
Here is how I found them:
parisize = 4000000, primelimit = 500509
? h = [ 0,1,0,-1,0; 1,0,1,-1,1; 0,1,0,0,-1; -1,-1,0,0,2; 0,1,-1,2,0]
%1 =
[0 1 0 -1 0]
[1 0 1 -1 1]
[0 1 0 0 -1]
[-1 -1 0 0 2]
[0 1 -1 2 0]
? id = [ 1,0,0,0,0; 0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1]
%2 =
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
? p1 = [ 1,0,0,0,0; 1,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1]
%3 =
[1 0 0 0 0]
[1 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
? p1t = mattranspose(p1)
%4 =
[1 1 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
? d1 = p1t * h * p1
%5 =
[2 1 1 -2 1]
[1 0 1 -1 1]
[1 1 0 0 -1]
[-2 -1 0 0 2]
[1 1 -1 2 0]
? p2 = [ 1,-1/2,-1/2,1,-1/2; 0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1]
%6 =
[1 -1/2 -1/2 1 -1/2]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
? p2t = mattranspose(p2)
%7 =
[1 0 0 0 0]
[-1/2 1 0 0 0]
[-1/2 0 1 0 0]
[1 0 0 1 0]
[-1/2 0 0 0 1]
? d2 = p2t * d1 * p2
%8 =
[2 0 0 0 0]
[0 -1/2 1/2 0 1/2]
[0 1/2 -1/2 1 -3/2]
[0 0 1 -2 3]
[0 1/2 -3/2 3 -1/2]
? p3 = [ 1,0,0,0,0; 0,1,1,0,1; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1]
%9 =
[1 0 0 0 0]
[0 1 1 0 1]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]
? p3t = mattranspose(p3)
%10 =
[1 0 0 0 0]
[0 1 0 0 0]
[0 1 1 0 0]
[0 0 0 1 0]
[0 1 0 0 1]
? d3 = p3t * d2 * p3
%11 =
[2 0 0 0 0]
[0 -1/2 0 0 0]
[0 0 0 1 -1]
[0 0 1 -2 3]
[0 0 -1 3 0]
? p4 = [ 1,0,0,0,0; 0,1,0,0,0; 0,0,0,1,0; 0,0,1,0,0; 0,0,0,0,1]
%12 =
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 0 1 0]
[0 0 1 0 0]
[0 0 0 0 1]
? p4t = mattranspose(p4)
%13 =
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 0 1 0]
[0 0 1 0 0]
[0 0 0 0 1]
? d4 = p4t * d3 * p4
%14 =
[2 0 0 0 0]
[0 -1/2 0 0 0]
[0 0 -2 1 3]
[0 0 1 0 -1]
[0 0 3 -1 0]
? p5 = [ 1,0,0,0,0; 0,1,0,0,0; 0,0,1,1/2,3/2; 0,0,0,1,0; 0,0,0,0,1]
%15 =
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 1/2 3/2]
[0 0 0 1 0]
[0 0 0 0 1]
? p5t = mattranspose(p5)
%16 =
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 1/2 1 0]
[0 0 3/2 0 1]
? d5 = p5t * d4 * p5
%17 =
[2 0 0 0 0]
[0 -1/2 0 0 0]
[0 0 -2 0 0]
[0 0 0 1/2 1/2]
[0 0 0 1/2 9/2]
? p6 = [ 1,0,0,0,0; 0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,-1; 0,0,0,0,1]
%18 =
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 -1]
[0 0 0 0 1]
? p6t = mattranspose(p6)
%19 =
[1 0 0 0 0]
[0 1 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 -1 1]
? d6 = p6t * d5 * p6
%20 =
[2 0 0 0 0]
[0 -1/2 0 0 0]
[0 0 -2 0 0]
[0 0 0 1/2 0]
[0 0 0 0 4]
? p = p1 * p2 * p3 * p4 * p5 * p6
%21 =
[1 -1/2 1 -1/2 1]
[1 1/2 1 1/2 1]
[0 0 0 1 -1]
[0 0 1 1/2 1]
[0 0 0 0 1]
? matdet(p)
%22 = -1
? q = - matadjoint(p)
%23 =
[1/2 1/2 1/2 -1 1/2]
[-1 1 -1 0 -1]
[0 0 -1/2 1 -3/2]
[0 0 1 0 1]
[0 0 0 0 1]
? d = d6
%24 =
[2 0 0 0 0]
[0 -1/2 0 0 0]
[0 0 -2 0 0]
[0 0 0 1/2 0]
[0 0 0 0 4]
? qt = mattranspose(q)
%25 =
[1/2 -1 0 0 0]
[1/2 1 0 0 0]
[1/2 -1 -1/2 1 0]
[-1 0 1 0 0]
[1/2 -1 -3/2 1 1]
? qt * d * q
%26 =
[0 1 0 -1 0]
[1 0 1 -1 1]
[0 1 0 0 -1]
[-1 -1 0 0 2]
[0 1 -1 2 0]
? h
%27 =
[0 1 0 -1 0]
[1 0 1 -1 1]
[0 1 0 0 -1]
[-1 -1 0 0 2]
[0 1 -1 2 0]
? qt * d * q - h
%28 =
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
[0 0 0 0 0]
?
? d
%29 =
[2 0 0 0 0]
[0 -1/2 0 0 0]
[0 0 -2 0 0]
[0 0 0 1/2 0]
[0 0 0 0 4]
? q
%30 =
[1/2 1/2 1/2 -1 1/2]
[-1 1 -1 0 -1]
[0 0 -1/2 1 -3/2]
[0 0 1 0 1]
[0 0 0 0 1]
? h
%31 =
[0 1 0 -1 0]
[1 0 1 -1 1]
[0 1 0 0 -1]
[-1 -1 0 0 2]
[0 1 -1 2 0]
?
==============================================