I ran $\frac{d^n}{dx^n}[(x!)!]$ through Wolfram|Alpha, which returned
$$\frac{\partial^n(x!)!}{\partial x^n} = \Gamma(1+x!)\,R(n,1+x!)$$ for
$R(n,x)=\psi(x)\,R(-1+n,x)+R^{(0,1)}(-1+n,x)$
$R(0,x)=1$
$n\in\mathbb{Z}$
$n>0$
where $\psi^{(n)}(x)$ is the $n$th derivative of the digamma function
They define the polygamma function as $$\psi^{(n)}(x)=\frac{d^{n+1}}{dx^{n+1}}\ln[\Gamma(x)]$$
What on Earth is $R^{(0,1)}$, and how can I make sense of this $R(n,x)$ business?