I recently saw this question ... https://math.stackexchange.com/questions/2393668/double-factorial-sum-k-0-infty-left-frac-2k-1-2k-right#2393668 ... & I am unable to show it.
The result $$1-\left( \frac{1}{2} \right)^{3}+\left( \frac{1\cdot 3}{2\cdot 4} \right)^{3}-\left( \frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6} \right)^{3}+\left( \frac{1\cdot 3\cdot 5\cdot 7}{2\cdot 4\cdot 6\cdot 8} \right)^{3}-...=\frac{\Gamma ^{2}\left( \frac{9}{8} \right)}{\Gamma ^{2}\left( \frac{7}{8} \right)\cdot \Gamma ^{2}\left( \frac{10}{8} \right)}$$
Now I know several results relating to those ratios of double factorials \begin{eqnarray*} \int_0^{\frac{\pi}{2}} \sin^{2n} \theta d \theta= \frac{ \pi}{2} \frac{(2n-1)!!}{(2n)!!} \tag{1} \\ \sum_{n=0}^{\infty} \frac{(2n-1)!!}{(2n)!!} y^n = \frac{1}{\sqrt{1-y}} \tag{2} \end{eqnarray*} From these two results it is reasonably easy to derive the series for the elliptic integral of the first kind \begin{eqnarray*} K(k)=\int_0^{\frac{\pi}{2}} \frac{d \theta}{\sqrt{1-k^2 \sin^{2}(\theta)}} =\frac{\pi}{2} \left(1+ \left(\frac{1}{2}\right)^2+ \left(\frac{1.3}{2.4}\right)^2+ \cdots \right) \end{eqnarray*} & it is well known that this can be evaluated for special values of $k$ in terms of Gamma functions whose arguements are rational values. See this question Can $\Gamma(1/5)$ be written in this form? and the reference cited there. So my first thought is to use $(1)$ three times, sum the geometric plum & we have \begin{eqnarray*} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \frac{d \alpha d \beta d \gamma}{1+ \sin^2 \alpha \sin^2 \beta \sin^2 \gamma} \end{eqnarray*} This triple integral looks difficult so ...
Second thoughts ... use $(1)$ twice & then use $(2)$ to get the double integral \begin{eqnarray*} \int_{0}^{\frac{\pi}{2}} \int_{0}^{\frac{\pi}{2}} \frac{d \alpha d \beta }{\sqrt{1+ \sin^2 \alpha \sin^2 \beta }} \end{eqnarray*} now substitute $ \sqrt{s} =\sin \alpha$ and $ \sqrt{t} =\sin \beta$ (might have lost a factor of $4$) \begin{eqnarray*} \int_{0}^{1} \int_{0}^{1} \frac{d s d t }{\sqrt{s(1-s)t(1-t)(1+st) }} \end{eqnarray*} & I am not sure what to do with this.
In both of these attempts I feel I have taken a wrong turn.
Can someone either give me a Big hint or a reference to the original derivation of this result or a reasonably complete solution ?
Bonus question ... why was it stated with $\frac{10}{8}$ instead of $\frac{5}{4}$ ?
The result $$1-\left( \frac{1}{2} \right)^{3}+\left( \frac{1\cdot 3}{2\cdot 4} \right)^{3}-\left( \frac{1\cdot 3\cdot 5}{2\cdot 4\cdot 6} \right)^{3}+\left( \frac{1\cdot 3\cdot 5\cdot 7}{2\cdot 4\cdot 6\cdot 8} \right)^{3}-...=\frac{\Gamma ^{2}\left( \frac{9}{8} \right)}{\Gamma ^{2}\left( \frac{7}{8} \right)\cdot \Gamma ^{2}\left( \color{red}{\frac{5}{4}} \right)}$$
Hint from Jack D'Auirzio : look at equation (6) here http://mathworld.wolfram.com/CompleteEllipticIntegraloftheFirstKind.html and use $2kk'=i$ where $k'$ is the complementary modulus.