\begin{align*}
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{For the first one:}\\[4pt]
&x^2\equiv 1\;(\text{mod}\;7)\\[4pt]
\iff\;&7\mid (x^2-1)\\[4pt]
\iff\;&7\mid (x-1)(x+1)\\[4pt]
\iff\;&7\mid (x-1)\;\;\text{or}\;\;7\mid (x+1)&&\text{[since $7$ is prime]}\\[4pt]
\iff\;&x\equiv 1\;(\text{mod}\;7)\;\;\text{or}\;\;x\equiv -1\;(\text{mod}\;7)\\[4pt]
\iff\;&x\equiv \pm 1\;(\text{mod}\;7)\\[8pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{For the second one:}\\[4pt]
&x^2\equiv 5\;(\text{mod}\;{11})\\[4pt]
\iff\;&x^2\equiv 16\;(\text{mod}\;{11})&&\text{[since $5 \equiv 16\;(\text{mod}\;{11})$]}\\[4pt]
\iff\;&11\mid (x^2-16)\\[4pt]
\iff\;&11\mid (x-4)(x+4)\\[4pt]
\iff\;&11\mid (x-4)\;\;\text{or}\;\;11\mid (x+4)&&\text{[since $11$ is prime]}\\[4pt]
\iff\;&x\equiv 4\;(\text{mod}\;{11})\;\;\text{or}\;\;x\equiv -4\;(\text{mod}\;{11})\\[4pt]
\iff\;&x\equiv \pm 4\;(\text{mod}\;{11})\\[8pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{Now the original question was to solve the system}\\[4pt]
&x^2\equiv 71\;(\text{mod}\;7)\\[4pt]
&x^2\equiv 71\;(\text{mod}\;11)\\[8pt]
\text{But}\;\;&
x^2\equiv 71\;(\text{mod}\;7)\\[4pt]
\iff\;&x^2\equiv 1\;(\text{mod}\;7)\\[4pt]
\iff\;&x\equiv \pm{1}\;(\text{mod}\;7)\\[8pt]
\text{and}\;\;&x^2\equiv 71\;(\text{mod}\;{11})\\[4pt]
\iff\;&x^2\equiv 5\;(\text{mod}\;{11})\\[4pt]
\iff\;&x\equiv \pm{4}\;(\text{mod}\;{11})\\[8pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{So the original system is equivalent to the systems}\\[4pt]
&x\equiv \pm{1}\;(\text{mod}\;7)\\[4pt]
&x\equiv \pm{4}\;(\text{mod}\;{11})\\[2pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{The two equations above are actually $4$ distinct}\\[-1.25pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{systems, based on the choices for $\pm$. I'll do one of}\\[-1.25pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{the $4$ systems.}\\[8pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{Thus, consider the system}\\[4pt]
&x\equiv 1\;(\text{mod}\;7)\\[4pt]
&x\equiv 4\;(\text{mod}\;{11})\\[2pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{Equivalently,}\\[4pt]
&x = 7a + 1,\;\text{for some $a \in \mathbb{Z}$}\\[4pt]
&x = 11b + 4,\;\text{for some $b \in \mathbb{Z}$}\\[4pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{so then}\\[4pt]
&7a + 1 = 11b + 4\\[4pt]
\implies\;&11b = 7a -3\\[4pt]
\implies\;&11b \equiv -3\;(\text{mod}\;7)\\[4pt]
\implies\;&4b \equiv 4\;(\text{mod}\;7)\\[4pt]
\implies\;&b \equiv 1\;(\text{mod}\;7)\\[4pt]
\implies\;&b=7c+1,\;\text{for some $c \in \mathbb{Z}$}\\[4pt]
\implies\;&x = 11(7c+1) + 4 = 77c + 15\\[4pt]
\implies\;&x \equiv 15\;(\text{mod}\;{77})\\[8pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{One can easily verify that if}\\[4pt]
&x \equiv 15\;(\text{mod}\;{77})\\[4pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{then the system}\\[4pt]
&x\equiv 1\;(\text{mod}\;7)\\[4pt]
&x\equiv 4\;(\text{mod}\;{11})\\[2pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{is satisfied. Thus we've solved one of}\\[-1.25pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{the $4$ systems. The others can be solved}\\[-1.25pt]
&\!\!\!\!\!\!\!\!\!\!\!\!\!
\text{in the same way.}\\[4pt]
\end{align*}