How do I integrate
$$\int_0^\infty e^{-a(\frac{1}{s^2} + s^2)}\, ds \tag{*}$$
Context: At page 602 of the paper "Reaction-Diffusion equations for Interacting Particle Systems" from De Masi Ferrari and Lebowitz one reads:
$$\tilde{c}_0(q-q';t)=8\gamma\int_0^tds(4\pi s)^{-1/2}\exp[-(q-q')^2/4s]\cdot\exp[-4(1-\gamma/\gamma_c)s]\tag{2.32a}$$ For $\gamma<\gamma_c$, $$\tilde{c}_0(q-q';t)\underset{t\to\infty}{\xrightarrow{\quad\!\!\!\!\qquad}}\dfrac{\gamma}{(\gamma_c-\gamma)^{1/2}}\exp[-2|q-q'|(\gamma_c-\gamma)^{1/2}]\tag{2.32b}$$
So using $C$, $\Delta$ and $A$ to denote constants that are in our way, we rewrite more neatly:
$$C \int_0^t \frac{1}{\sqrt s} e^{\frac{-\Delta}{s}} e^{-A s}\, ds $$
Now consider a series of change of variables:
1) $ s = \Delta y$ ( $ds = \Delta dy$) yields $$ C(\Delta)^{1/2}\int_0^t \frac{1}{\sqrt y} e^{\frac{-1}{y}} e^{-A\Delta y}\, dy $$
2) $y = x^2$ $dy = 2x dx$ yields
$$2C(\Delta)^{1/2}\int_0^{\sqrt{t}} e^{\frac{-1}{x^2}} e^{-A\Delta x^2}\, dx $$
3) Finally $x = \lambda z$ yields
$$2C(\Delta)^{1/2}\lambda\int_0^{\frac{\sqrt{t}}{\lambda}} e^{\frac{-1}{\lambda^2x^2}} e^{-A\Delta\lambda^2 x^2}\, dx $$
Choose $\lambda$ such that
$$\frac{1}{\lambda^2} = A\Delta\lambda^2$$
That is, choose $\lambda = \frac{1}{(A\Delta)^{1/4}}$
So we arrive at
$$2C(\Delta)^{1/2}\frac{1}{(A\Delta)^{1/4}}\int_0^{\frac{\sqrt{t}}{\lambda}} e^{\frac{-(A\Delta)^{1/2}}{x^2}} e^{-(A\Delta)^{1/2} x^2}\, dx $$
Therefore, to conclude this integral, need to compute $(*)$ with $a =(A\Delta)^{1/2}$.
but I am stuck.