Given that
$$\lim\limits_{x\to 0} \frac {x(1+a\cos x)-b\sin x}{x^3}=1$$ What is the value of $a+b$
My try
$\lim\limits_{x\to 0} (\frac {x(1+a\cos x)}{x^3}-\frac {b\sin x}{x^3})=1$
$\lim\limits_{x\to 0} (\frac {(1+a×cos(x)}{x^2}-\frac {b}{x^2})=1$
$\lim\limits_{x\to 0} \frac {1+a\cos x-bx}{x^2}=1$
Apply L'Hôpital's rule: $\lim\limits_{x\to 0} \frac {-a\cos x-b}{2x}=1$
Apply L'Hôpital's rule again: $\lim\limits_{x\to 0} \frac {-a\sin x}{2}=1$ $\to$ $a=-2$
Is my approach right?