I have the limit $$ \lim_{x\to0_+} \frac{e^x - x e^x - 1}{\left(e^x - 1 \right)^2} $$ which I need to compute without L'Hôpital's rule.
(The result is $-\frac{1}{2}$ with L'Hôpital's rule).
Thanks.
I have the limit $$ \lim_{x\to0_+} \frac{e^x - x e^x - 1}{\left(e^x - 1 \right)^2} $$ which I need to compute without L'Hôpital's rule.
(The result is $-\frac{1}{2}$ with L'Hôpital's rule).
Thanks.
We write $$\frac {e^x-xe^x-1}{x^2}\color {red}{\frac {x^2}{(e^x-1)^2}}. $$
Let us begin by
$$L=\lim_{0^+}\frac {e^x-xe^x-1}{x^2} $$
put $x^2=t $ and $$f (t )=e^{\sqrt {t}}-\sqrt {t}e^{\sqrt {t}}$$
then $$L=\lim_{0^+}\frac {f (t)-f (0)}{t} =f'(0) $$ and since $$f'(t)=-\frac {1}{2}e^{\sqrt {t}} $$ we have
$$f'(0)=-\frac {1}{2} $$
the $\color {red}{red }$ fraction goes to $1$.
the final result is $-\frac {1}{2} $.
It is also simple to look at Taylor expansions around $0$ up to at least second order $$e^x = 1 + x + \frac{1}{2}x^2... $$ then $$\frac{e^x - xe^x - 1}{(e^x-1)^2} \approx \frac{1 + x + \frac{1}{2}x^2 - x - x^2 - \frac{1}{2}x^3 - 1} {(x+ \frac{1}{2}x^2)^2} = \frac{ - \frac{1}{2}x^2 - \frac{1}{2}x^3}{x^2 + \frac{1}{4}x^4 + x^3} $$ and now by looking at the lowest order terms, the conclusion that $$\lim_{x \to 0^+} = -\frac{1}{2}$$ follows quick
$\lim \limits_{x \to0+}$ $\frac{e^x-xe^x-1}{\left(e^x-1\right)^2}\cdot\frac{x^2}{x^2}$= $\lim \limits_{x \to0+}$ $\frac{e^x-x+x-xe^x-1}{x^2}\cdot\lim \limits_{x \to0+}$ $\frac{x^2}{\left(e^x-1\right)^2}$
= $\lim\limits_{x\to 0^{+}}\frac{e^x-x+x-xe^x-1}{x^2}\cdot\lim \limits_{x \to0+}\left[\frac{x}{\left(e^x-1\right)}\right]^2$ =$\lim\limits_{x\to 0^{+}}\frac{e^x-x-1+x-xe^x}{x^2}\cdot1$
=$\lim \limits_{x \to0+}\frac{e^x-x-1}{x^2}-\lim \limits_{x \to0+}\frac{x\left(e^x-1\right)}{x^2}$ =$\frac{1}{2}-\lim \limits_{x \to0+}\frac{e^x-1}{x}$ =$\frac{1}{2}-1=-\frac{1}{2}$
note $\lim \limits_{x \to0+}\frac{e^x-x-1}{x^2}=\frac{1}{2}$ can be proved without Lohspital rule or series
Let's give it one more shot even though there are some good answers. We can proceed as follows \begin{align} L&=\lim_{x\to 0^{+}}\frac{e^{x}-xe^{x}-1}{(e^{x}-1)^{2}}\notag\\ &=\lim_{x\to 0^{+}}\frac{e^{x}-xe^{x}-1}{x^{2}}\cdot\left(\frac{x}{e^{x}-1}\right)^{2}\notag\\ &= \lim_{t\to 0^{-}}\frac{e^{-t}+te^{-t}-1}{t^{2}}\notag\\ &=-\lim_{t\to 0^{-}}\frac{e^{t}-t-1}{t^{2}}\cdot\frac{1}{e^{t}}\notag\\ &=-\frac{1}{2}\text{ (via Taylor series)} \notag \end{align}