Suppose that $f$ is $n$ times differentiable at $x_0$ and $p$ is a polynomial: $$p(x) = a_0 +a_1(x-x_0)+...+a_n(x-x_0)^n$$ of degree $\leq n$ such that $$\lim\limits_{x \rightarrow x_0} \frac{f(x)-p(x)}{(x-x_0)^n} =0$$ Show that $a_r= \frac{f^{(r)}(x_0)}{r!}$ if $0 \leq r \leq n$, that is $p=T_n$, the $n^{th}$ Taylor polynomial of $f$ about $x_0$.
First, $f^{(r)}(x_0)$, with $0 \leq r \leq n$, does exist according to the hypothesis.
If n=1, let's check that $a_1 =\frac{f'(x_0)}{1!}=f'(x_0)$
$$\lim\limits_{x \rightarrow x_0} \frac{f(x)-p(x)}{(x-x_0)} =0$$
$$\lim\limits_{x \rightarrow x_0} \frac{f(x)-p(x)}{(x-x_0)} \cdot \lim\limits_{x \rightarrow x_0} (x-x_0)=0 \cdot \lim\limits_{x \rightarrow x_0} (x-x_0)$$
$$\lim\limits_{x \rightarrow x_0} f(x)-p(x) = 0$$ $$\lim\limits_{x \rightarrow x_0} f(x) = \lim\limits_{x \rightarrow x_0} p(x)$$ $$\lim\limits_{x \rightarrow x_0} f(x) = \lim\limits_{x \rightarrow x_0} [a_0 +a_1(x-x_0)]$$ Taking the limit with $f(x)$ and $p(x)$ continuous $$f(x_0) = a_0 +a_1(x_0-x_0)$$ $$f(x_0) = a_0$$ Finding $a_1$: $$\lim\limits_{x \rightarrow x_0} \frac{f(x)-p(x)}{(x-x_0)} =0$$ $$\lim\limits_{x \rightarrow x_0} \frac{f(x)-a_0-a_1(x-x_0)}{(x-x_0)} =0$$ $$\lim\limits_{x \rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0} =\lim\limits_{x \rightarrow x_0} \frac{a_1(x-x_0)}{x-x_0}$$ $$\lim\limits_{x \rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0} =a_1 \cdot \lim\limits_{x \rightarrow x_0} \frac{(x-x_0)}{x-x_0}$$ $$\lim\limits_{x \rightarrow x_0} \frac{f(x)-f(x_0)}{x-x_0} =a_1 \cdot \lim\limits_{x \rightarrow x_0} 1$$ $$\frac{f'(x_0)}{1!} =a_1 $$
Assumption $P_{r-1}$: $a_{r-1}= \frac{f^{(r-1)}(x_0)}{(r-1)!}$ to be true such that $$g_{r-1}=\lim\limits_{x \rightarrow x_0} \frac{f(x)-p_{r-1}(x)}{(x-x_0)^{r-1}} =0$$
Finding $a_r$
$$\lim\limits_{x \rightarrow x_0} \frac{f(x)-p_r(x)}{(x-x_0)^r} =0$$ $$\lim\limits_{x \rightarrow x_0} \frac{f(x)-p_{r-1}(x)-a_r(x-x_0)^r}{(x-x_0)^r} =0$$ $$\lim\limits_{x \rightarrow x_0} \frac{f(x)-p_{r-1}(x)}{(x-x_0)^r} = a_r \lim\limits_{x \rightarrow x_0} \frac{(x-x_0)^r}{(x-x_0)^r}$$ $$\lim\limits_{x \rightarrow x_0} \frac{f(x)-p_{r-1}(x)}{(x-x_0)^r} = a_r $$
Given $f(x) - p(x) = R(x)$ with $R(x)$ a polynomial of degree $r$, we have $R(x)=o((x-x_0)^r)$. Therefore as $x \rightarrow x_0$, $R(x) \rightarrow 0$.
Given $f(x) - p_{r-1} =R_{r-1}$ with $R_{r-1}(x)$ a polynomial of degree $r-1$, we have $ \lim\limits_{x \rightarrow x_0} R(x) = \lim\limits_{x \rightarrow x_0} R_{r-1}(x-x_0) = 0$
$$\lim\limits_{x \rightarrow x_0} \frac{f(x)-p(x)}{(x-x_0)^r} = a_r $$ $$ \lim\limits_{x \rightarrow x_0} \frac{[f(x)-p(x)]^{(r-1)}}{[(x-x_0)^r]^{(r-1)}} = a_r $$ $$ \frac{1}{r!} \lim\limits_{x \rightarrow x_0} \frac{ f^{(r-1)}(x)-p^{(r-1)}(x) } {x-x_0} = a_r $$ $$ \frac{1}{r!} \lim\limits_{x \rightarrow x_0} \frac{ f^{(r-1)}(x)-f^{(r-1)}(x_0) } {x-x_0} = a_r $$ $$ \frac{1}{r!} \cdot f^{(r)}(x_0) = a_r $$
I understood that you are supposed to apply L'hospital rule and do the $(r-1)^{th}$ derivative, but I unsure of the correctness of argumentations of the last 5 lines above (or if it is correct, what would the justifications be?) leading to the end result.
$$ \frac{f^{(r)}(x_0)}{r!}=a_r$$
?