So I'm viewing a short proof on the uniqueness of Taylor polynomials.
Uniqueness of Taylor polynomial:
Let $f:]a,b,[ \rightarrow \mathbb{R}$ $n$ times continuously differentiable and $x_0 \in ]a,b,[$. If $p$ is $n$th degree polynomial function for which$$f(x)-p(x)=o(|x-x_0|^n), \space \text{when} \space x \rightarrow x_0$$ then
$$p(x)=T_{n, x_0} f(x)$$
Proof starts like:
$$\frac{p(x)-T_{n, x_0}f(x)}{(x-x_0)^n} = \frac{p(x)-f(x)}{(x-x_0)^n}+\frac{f(x)-T_{n, x_0}f(x)}{(x-x_0)^n}$$
then
$$\frac{p(x)-f(x)}{(x-x_0)^n} \rightarrow 0 \space, when \space x-x_0 \rightarrow 0$$
$$\frac{f(x)-T_{n, x_0}f(x)}{(x-x_0)^n} \rightarrow 0 \space, when \space x-x_0 \rightarrow 0$$
Now my problem is, how can one actually say that the above approach $0$ if the denominator approaches $0$?