$$a_n=2a_{n-1}+3a _{n-2}$$ for $n\ge 3$
Given $a_1=a_2=1$, prove that$$a_n=\frac{1}{2}(3^{n-1}-(-1)^n)$$
Base Case: $a_1=a_2=1$
Induction Step($k\ge 3$): $$\implies a_n=2\cdot\frac{1}{2}(3^{k-1}-(-1)^k)+3\cdot\frac{1}{2}(3^{k-2}-(-1)^{k-1})$$ $$\implies a_n=3^{k-1}-(-1)^k+\frac{3}{2}\cdot3^{k-2}-\frac{3}{2}\cdot(-1)^{k-1}$$ $$\implies a_n=3^{k-1}+(-1)^{k+1}+\frac{1}{2}\cdot3^{k-1}+\frac{3}{2}(-1)^{k}$$ $$\implies a_n=\frac{3}{2}\cdot3^{k-1}+(-1)^{k+1}+\frac{3}{2}(-1)^{k}$$ $$\implies a_n=\frac{1}{2}\cdot3^{k}+(-1)^{k+1}+\frac{3}{2}(-1)^{k}$$
Im having trouble with the second term, i can't factor it out