0

$$a_n=2a_{n-1}+3a _{n-2}$$ for $n\ge 3$

Given $a_1=a_2=1$, prove that$$a_n=\frac{1}{2}(3^{n-1}-(-1)^n)$$

Base Case: $a_1=a_2=1$

Induction Step($k\ge 3$): $$\implies a_n=2\cdot\frac{1}{2}(3^{k-1}-(-1)^k)+3\cdot\frac{1}{2}(3^{k-2}-(-1)^{k-1})$$ $$\implies a_n=3^{k-1}-(-1)^k+\frac{3}{2}\cdot3^{k-2}-\frac{3}{2}\cdot(-1)^{k-1}$$ $$\implies a_n=3^{k-1}+(-1)^{k+1}+\frac{1}{2}\cdot3^{k-1}+\frac{3}{2}(-1)^{k}$$ $$\implies a_n=\frac{3}{2}\cdot3^{k-1}+(-1)^{k+1}+\frac{3}{2}(-1)^{k}$$ $$\implies a_n=\frac{1}{2}\cdot3^{k}+(-1)^{k+1}+\frac{3}{2}(-1)^{k}$$

Im having trouble with the second term, i can't factor it out

tattwamasi amrutam
  • 12,802
  • 5
  • 38
  • 73
TheGamer
  • 393

2 Answers2

2

Write $3/2(-1)^k$ as $-3/2(-1)^{k+1}$ and then the second and third term cancel down to the required result.

PJF49
  • 506
1

one can do it like follows: $$\frac{1}{2}3^k-(-1)^k+\frac{3}{2}(-1)^k=\frac{1}{2}3^k+(-1)^k\left(\frac{3}{2}-1\right)=\frac{1}{2}\left(3^k+(-1)^k\right)$$ note that if $$a_n=\frac{1}{2}(3^{n-1}-(-1)^n)$$ then $$a_{n-1}=\frac{1}{2}(3^{n-2}-(-1)^{n-1})$$ and $$a_{n-2}=\frac{1}{2}(3^{n-3}-(-1)^{n-2})$$