0

$a_1=1, a_2=8$ and $a_n=a_{n-1} +2a_{n-2}$ for $n\ge3$

Prove that

$$a_n =3\cdot2^{n-1} +2(-1)^n$$ for $n\in N$

Base Case: n=1

$a_1= 3\cdot2^0+2(-1)^1, a_1 =1$, the base case holds true

I.H: Suppose its true for $$a_k =3\cdot2^{k-1} +2(-1)^k$$

How do i proceed for induction step, am i suppose to use $a_n=a_{n-1} +2a_{n-2}$ in the induction step?

TheGamer
  • 393
  • 2
    Guide:

    check that it is true for $a_2$ as well.

    now you can suppose it is true for $n=k-1$ and $n=k-2$ and prove that it is true for $n=k$.

    – Siong Thye Goh Jul 15 '17 at 23:00
  • @SiongThyeGoh yes it works for $a_2$ and how did u get n=k-1 and n=k-2 – TheGamer Jul 15 '17 at 23:01
  • 2
    That is the induction hypothesis. Suppose $a_{k-1}=3.2^{(k-1)-1}+2(-1)^{k-1}$ and $a_{k-2}=3.2^{(k-2)-1}+2(-1)^{k-2}$, try to prove that $a_{k}=3.2^{(k)-1}+2(-1)^{k}$ – Siong Thye Goh Jul 15 '17 at 23:04

3 Answers3

1

NOTE: For this problem, you need two base cases, since the recursive sequence is defined in terms of the previous two terms. I'll leave that part up to you.

INDUCTION STEP: Assume that both $$a_n=3(2^{n-1})+2(-1)^n$$ and $$a_{n+1}=3(2^{n})+2(-1)^{n+1}$$ for some $n\ge 3$. Then, by hypothesis $$a_{n+2}=a_{n+1}+2a_n$$ so substituting the values of $\,a_{n+1}\,$ and $\,a_{n}$ from our induction hypothesis yields $$\begin{align} a_{n+2}&=3(2^{n})+2(-1)^{n+1}+2(3(2^{n-1})+2(-1)^n)\\ &=3(2^{n})+2(-1)^{n+1}+3(2^{n})+4(-1)^n\\ &=6(2^{n})+2(-1)^{n}\\ &=3(2^{n+1})+2(-1)^{n+2} \end{align}$$ which completes the proof of the inductive step.

Bill Dubuque
  • 272,048
Franklin Pezzuti Dyer
  • 39,754
  • 9
  • 73
  • 166
0

Let's consider two real $r_1,r_2$ of sum $s$ and product $p$ then if $(a_n)_n$ verifies

$a_{n}-s\,a_{n-1}+p\,a_{n-2}=0$

Then $\exists\ \alpha,\beta$ such that $a_n=\alpha(r_1)^n+\beta(r_2)^n$.


It can be proved by induction, if we assume the formula verified for initial terms then

$\require{cancel} a_{n+1}=sa_{n}-pa_{n-1}=(r_1+r_2)\left(\alpha r_1^n+\beta r_2^n\right)-r_1r_2\left(\alpha r_1^{n-1}+\beta r_2^{n-1}\right)=\alpha r_1^{n+1}+\cancel{\alpha r_2r_1^n}+\cancel{\beta r_1r_2^n}+\beta r_2^{n+1}-\cancel{\alpha r_2r_1^n}-\cancel{\beta r_1r_2^n}=\alpha r_1^{n+1}+\beta r_2^{n+1}$


So whe you have an equation of the type $a_n=a_{n-1}+2a_{n-2}$

Then you start by solving $r^2=r+2\iff r^2-r-2=0\iff(r+1)(r-2)=0$

Whose roots are $r_1=-1$ and $r_2=2$.

So there exist $\alpha,\beta$ such that $a_n=\alpha(-1)^n+\beta(2^n)$

Initial terms give $\begin{cases} a_1=1=-\alpha+2\beta\\ a_2=8=\alpha+4\beta\end{cases}\iff\begin{cases}\alpha=2\\\beta=\frac 32\end{cases}$

And finally $a_n=2(-1)^n+\frac 32\cdot2^n=2(-1)^n+3\cdot2^{n-1}$


You can find more on this general method here :

https://en.wikipedia.org/wiki/Linear_difference_equation

zwim
  • 28,563
-1

hint

Let for $n\ge 3$, $$b_n=a_n+a_{n-1} $$

then $$b_n=2b_{n-1} $$ Geometric.