Let's consider two real $r_1,r_2$ of sum $s$ and product $p$ then if $(a_n)_n$ verifies
$a_{n}-s\,a_{n-1}+p\,a_{n-2}=0$
Then $\exists\ \alpha,\beta$ such that $a_n=\alpha(r_1)^n+\beta(r_2)^n$.
It can be proved by induction, if we assume the formula verified for initial terms then
$\require{cancel} a_{n+1}=sa_{n}-pa_{n-1}=(r_1+r_2)\left(\alpha r_1^n+\beta r_2^n\right)-r_1r_2\left(\alpha r_1^{n-1}+\beta r_2^{n-1}\right)=\alpha r_1^{n+1}+\cancel{\alpha r_2r_1^n}+\cancel{\beta r_1r_2^n}+\beta r_2^{n+1}-\cancel{\alpha r_2r_1^n}-\cancel{\beta r_1r_2^n}=\alpha r_1^{n+1}+\beta r_2^{n+1}$
So whe you have an equation of the type $a_n=a_{n-1}+2a_{n-2}$
Then you start by solving $r^2=r+2\iff r^2-r-2=0\iff(r+1)(r-2)=0$
Whose roots are $r_1=-1$ and $r_2=2$.
So there exist $\alpha,\beta$ such that $a_n=\alpha(-1)^n+\beta(2^n)$
Initial terms give $\begin{cases} a_1=1=-\alpha+2\beta\\ a_2=8=\alpha+4\beta\end{cases}\iff\begin{cases}\alpha=2\\\beta=\frac 32\end{cases}$
And finally $a_n=2(-1)^n+\frac 32\cdot2^n=2(-1)^n+3\cdot2^{n-1}$
You can find more on this general method here :
https://en.wikipedia.org/wiki/Linear_difference_equation
check that it is true for $a_2$ as well.
now you can suppose it is true for $n=k-1$ and $n=k-2$ and prove that it is true for $n=k$.
– Siong Thye Goh Jul 15 '17 at 23:00