In the spirit of the previous question "Conjectures that have been disproved with extremely large counterexamples?", and as an attempt to salvage this closed question, I'm interested in sets of natural numbers or integers such that it was historically an open question whether they contained infinitely many numbers, but have now been proven to be finite.
For example, it is still not known whether there are infinitely many perfect numbers. If it were proved that there are in fact only finitely many, that would make them a valid answer to this question.
I know that one can easily make up trivial examples ("I don't know whether $A=\{n:|n|<10^{1000}\}$ is finite. Oh wait, it is. Done!") but those would not count as historical open questions.
Note: This is not identical to the previous question on extremely large counterexamples, because one may have an extremely large counterexample while still having infinitely many larger non-counterexamples.