Prove that
$$\sum _{ i=1 }^{ n }{ \frac { i }{ { 2 }^{ i } } = } 2-\frac { n+2 }{ { 2 }^{ n } } \quad { for\quad all}\quad n\in \mathbb N $$
My attempt:
For my inductive step I tried the following:
$$\left(2 − \left(\frac{k + 2}{2^k}\right)\right) + \left(\frac{k + 1}{2^{k+1}}\right) = 2 − \left(\frac{k + 3}{2^{k+1}}\right)$$
But they never equal, this is where I'm stuck.