Define $({a}_{n})$ inductively by putting ${a}_{1}={a}_{2}=1$ and ${a}_{n+2}={a}_{n}+{a}_{n+1}$, $\forall n\in N$. Write ${x}_{n}=\frac{{a}_{n}}{{a}_{n+1}}$ and prove that $\lim {x}_{n}=\phi$, where $\phi$ is the only positive real such that $\frac{1}{1+\phi}=\phi$.
The hint is to define $f\left(n+2 \right)=f\left(n+1 \right)+f\left(n \right)$ with initial conditions $f\left(1 \right)=f\left(2 \right)=1$, defining ${x}_{n}=\frac{f\left(n \right)}{f\left(n+1 \right)}$ then $\lim {x}_{n}=\phi$ positive root of $x^2 + x - 1=0$.
I do not understand how one concludes that this $\phi$ is root