using epsilon Delta approach Prove that $$\lim_{x \to 8} \sqrt[3]x=2$$
Given $\epsilon \gt 0$ we need to find $\delta=f(\epsilon)$ such that $$|x-a| \lt \delta$$ $\implies$
$$|f(x)-L| \lt \epsilon$$ So
$$|\sqrt[3]x -2| \lt \epsilon$$ $\implies$
$$2-\epsilon \lt \sqrt[3]x \lt 2+\epsilon$$ Or
$$(2-\epsilon)^3 \lt x \lt (2+\epsilon)^3$$ Now using
$(a-b)^3$ and neglecting higher powers of $\epsilon$ we get
$$8-12 \epsilon \lt x \lt 8+12\epsilon$$
So
$$-12 \epsilon \lt x-8 \lt 12 \epsilon$$
So $$\delta=12 \epsilon$$
But my book answer is $$\delta =min \left\{8-(2-\epsilon)^3, 8-(2+\epsilon)^3\right\}$$
can any one clarify this